
CHAPTER 21 

The Riemann-Roch Theorem 

2Ia. Spaces of Functions and I-Forms 

Fix a compact Riemann surface x, and let g = gx be its genus, M its 
field of meromorphic functions, and 0 the space of meromorphic 1-
forms on X. A divisor D = L.mpP on X is just another word for a 0-
chain. That is, it assigns an integer mp to each point P in X, with 
only finitely many being nonzero. We say that the order of D at P 
is mp, and write ordp(D) = mp. The divisors on X form an abelian 
group. As for O-chains, the degree of a divisor is the sum of the 
coefficients: deg(D) = ~mp. If E = ~npP is another divisor, we write 
E ~ D to mean that np ~ mp for all P in X. A divisor D is called 
effective if each coefficient mp is nonnegative, i.e., D ~ o. 

Any nonzero meromorphic function f on X determines a divisor 

Div(f) = L. ordp(f) P . 

Similarly, any nonzero meromorphic I-form W on X determines a di­
visor 

Div(w) = L.ordp(w)p. 

Corollary 19.5 and Proposition 20.14 say that 

deg(Div(f» = 0 and deg(Div(w» = 2g - 2. 

Our goal in this chapter is to fmd meromorphic functions and I-forms 
with prescribed, or at least controlled behavior. For example, we want 
to find functions with poles only at certain points, and with the orders 
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296 21. The Riemann-Roch Theorem 

of poles at these points not exceeding some bounds. For a divisor 
D = L mpP on X let 

L(D) = {fEM: ordp(f) ~ -mp for all P EX} 
= {fEM: Div(f) + D ~O}. 

This set of functions L(D) is a complex subspace of M. Similarly, let 

.o.(D) = {w E.o.: ordp(w) ~ mp for all P EX} 
= {w E.o.: Div(w) ~D}, 

a complex subspace of .0.. For example, .0.(0) is the space .0.1.0 of 
holomorphic I-forms on X. Note that L(D) allows poles at the points 
P where mp> 0, while .o.(D) requires zeros at the same points. 

Lemma 21.1. (a) L(D) = 0 if deg(D) < 0, and .o.(D) = 0 if 
deg(D) > 2g - 2. 

(b) For any D and any point Q in X, L(D) CL(D + Q), and 
.o.(D) :J .o.(D + Q). In addition, 

dim(L(D + Q)/L(D»:5 1 and dim(.o.(D)/.o.(D + Q» :5 I . 

(c) L(D) and .o.(D) are finite-dimensional vector spaces. 

Proof. (a) follows from the fact that deg(Div(f» = 0 and 
deg(Div(w» = 2g - 2. To prove (b), fix a local coordinate function z 
at Q, and let m = ordQ(D). Any f in L(D + Q) has a local expression 
h(z)/zm+l, with h holomorphic at O. The map which assigns h(O) to 
f determines a homomorphism of complex vector spaces from L(D + Q) 
to C, whose kernel is exactly L(D). This shows that either 
L(D) = L(D + Q) or the quotient L(D + Q)/L(D) is one dimensional. 
Similarly, any w in .o.(D) has a local expression h(z)~dz for h,hol­
omorphic, and assigning h(O) to w determines a map from .o.(D) to 
C whose kernel is .o.(D + Q). 

It follows from (b) that L(D) is finite dimensional if and only if 
L(D + Q) is finite dimensional. Since one can get from any D to a 
divisor of negative degree by a finite number of subtractions of a 
point, the fact that L(D) is finite dimensional follows from (a). Sim­
ilarly for .o.(D), one can add points until the degree gets larger than 
2g-2. 0 

Exercise 21.2. If D:5 E, show that 

dim(L(E» - dim(L(D» :5 deg(E) - deg(D). 

One sees from the preceding proof that dim(L(D»:S deg(D) + 1. 
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For example, L(O) = C has dimension 1. If D = Q is a point, however, 
we see from Exercise 20.7 that L(Q) is also C unless X=- S2. 

Exercise 21.3. If X = S2, show that dim(L(D» = deg(D) + 1 when­
ever deg(D) ~ -1. 

Lemma 21.4. (a) For any nonzero meromorphic functionf and any 
divisor D, 

dim(L(D» = dim(L(D + Div(f)). 

(b) For any nonzero meromorphic I-form wand any divisor D, 

dim(!1(D» = dim(L(Div(w) - D». 

Proof. We have isomorphisms 

L(D) ~ L(D + Div(f», 

and 

L(Div(w) - D) ~ !1(D) , 

from which the lemma follows. 

h ~ h'f, 

h ~ h·w, 

D 

Although it has been fairly easy to get an upper bound for the size 
of L(D) , it is not so easy to get lower bounds, i.e., to show that there 
must be functions with given poles. When X comes from an algebraic 
curve, however, Proposition 20.8 gives a first step, for at least one 
divisor. Take z: X ~ S2 as in that proposition, and let E be the divisor 
of poles of z, that is, 

E = 2: eiP)P. 
z(P)=OO 

This is a divisor of degree n on X, where n is the degree of the map­
ping z. 

Lemma 21.5. For this divisor E, there is a constant k such that for 
all integers m, 

dim(L(mE» ~ deg(mE) + 1 - k = mn + 1 - k. 

Proof. We need the following fact: for any meromorphic function h 
on X, there is a nonzero polynomial p(z) in C[z] and an integer t so 
that p(z)' h is in L(tE). To prove this, we need only find p(z) so that 
p(z)' h has no poles outside E, and one sees that II(z - z(P»-OrdP(h) , 
the product over all P such that z(P)"# 00 and ordp(h) < 0, is such a 
polynomial. 
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We saw in Proposition 20.8 (see Lemma C.19) that M is a vector 
space over lC(z) of dimension n. By the fact proved in the preceding 
paragraph, we can find a basis hi, ... , hn for Mover lC(z) and an 
integer t so that each hi is in L(tE). Now for m = t + s, s ~ 0, the 
(s + 1) . n functions t· hi' 0 $, j $, s, 1 $, i $, n, are all in L(mE). This 
means that, for such m, the dimension of L(mE) is at least 
(m - t + 1) . n = mn + 1 - k for some constant k. Increasing k if nec­
essary, one may also achieve this inequality for the finite number of 
m with 0 $, m < t. The inequality is automatic for m < 0 and any k ~ 0, 
so the lemma is proved. 0 

Lemma 21.6. There are integers k and N so that 

dim(L(D» ~ deg(D) + I - k 

for all divisors D on X, with equality 

dim(L(D» = deg(D) + 1 - k if deg(D) ~ N. 

Proof. Choose E as above, and define k to be the smallest integer so 
that Lemma 21.5 holds for k. Suppose that D is a divisor on X such 
that D $, mE for some integer m. It follows from Exercise 21.2 that 

dim(L(D)) ~ deg(D) + dim(L(mE» - deg(mE) ~ deg(D) + 1 - k, 

which proves the required inequality for such a divisor D. Given any 
divisor D on X, there is a nonzero meromorphic function h such that 
D - Div(h) $, mE for some integer m. Indeed, as in the preceding lemma, 
one can take h to be II(z - z(p)trdp(D), the product over all P with 
z(P) ¥- 00. Then by Lemma 21.4(a) and the result just proved, 

dim(L(D» = dim(L(D - Div(h))) 
~ deg(D - Div(h» + 1 - k = deg(D) + 1 - k. 

By the minimality of k, there is some divisor Do such that the di­
mension of L(Do) is deg(Do) + 1 - k. From Exercise 21.2 it follows 
that for any divisor D such that D ~ Do, 

dim(L(D» $, deg(D) + dim(L(Do» - deg(Do) $, deg(D) + I - k, 

so dim(L(D» = deg(D) + 1 - k for any such D. 
Let N = deg(Do) + k. If the degree of D is at least N, then the degree 

of D - Do is at least k, so the dimension of L(D - Do) is at least 
k + 1 - k = 1. There is therefore a nonzero function fin L(D - Do), 
which means that D + Div(f) ~ Do, and so 

dim(L(D» = dim(L(D + Div(!)) 
= deg(D + Div(f» + 1 - k deg(D) + 1 - k, 

which proves the lemma. o 
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There can be only one integer k with the second property in the 
lemma, so k depends only on the Riemann surface X. We will see in 
§21c that k is the genus of X, and that N can be taken to be 2g - 2. 

21b. Adeles 

Lemma 21.1 (b) says that each of the two subspaces L(D) C L(D + Q) 
and n(D + Q) C n(D) are either equalities or subspaces of codimen­
sion one. These cannot both be subspaces of codimension one, for if 
w is in n(D) andfis in L(D + Q), thenf· w is a meromorphic I-form 
with at most one simple pole at Q; the Residue Formula then implies 
that ResQ(f' w) = 0, which means that f· w does not have a pole at 
Q, and hence either w is in n(D + Q) orfis in L(D). We will even­
tually see that one of these inclusions is an equality exactly when the 
other is not, and this is the core of the proof of the Riemann-Roch 
theorem. What we will do in this section is to prove a kind of local 
version of this assertion. 

For a point P in X, let us denote by Mp the germs of meromorphic 
functions at P. These germs are defined as in §16b, by taking equiv­
alence classes of meromorphic functions in neighborhoods of P, two 
being equivalent if they agree on some (punctured) neighborhood of 
P. If z is a local coordinate at P, any such germ has a unique power 
series expansion ~;=_manzn. Iffis in Mp , and w is a meromorphic 1-
form on X, the residue Resp(f' w) can be defined to be 1/2'ITi times 
the integral of f' w around a small counterclockwise circle around P. 
In local coordinates, f' w can be written ~bnzn dz, and this residue is 
b- t • 

Define an adele on X to be the assignment of a germfp of a mero­
morphic function at P for every point P in X, with the property that 
ordp(fp);::: 0 (i.e.,Jp is holomorphic at P) for all but finitely many P. 
We write f= (fp) for the adele defined by such a collection of func­
tionsfp. These adeles form a complex vector space, which we denote 
by R. Any meromorphic function f on X determines an adele, by as­
signing the germ off at P to each P, so the field M of meromorphic 
functions is a subspace of R. An adele can be thought of as a kind 
of "discontinuous function" on X. Since there is no relation between 
the "values" fp at different points of X, it is remarkable that they can 
be a useful tool. 

If f = (fp) is an adele, then Resp(fp' w) = 0 for all but finitely many 
P (those wherefp or w has a pole). We can therefore add the residues 
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Resp(fp . U) over all P in X, getting a complex number. In other words, 
U) defines a homomorphism 

<p",: R ~ C, f = (fp) ~ 2: Resp(fp' U), 

PEX 

which is a linear map of complex vector spaces. If D = LmpP is a 
divisor such that U) is in O(D), and ordp(fp) ~ -mp for all P, then 
fp' U) is holomorphic at P, so the residue is zero. Define R(D) C R by 
the formula 

R(D) = {f = (fp) E R: ordp(fp) ~ -ordp(D) for all P EX}. 

This means that the homomorphism <p", vanishes on R(D). In addition, 
the Residue Formula says that if these fp all come from one mero­
morphic function f on X, then LpEX Resp(f' U) = 0, so <p", also van­
ishes on the subspace M of R. It follows that <p", determines a ho­
momorphism (still denoted <p.,) 

<p",: R/(R(D) + M) ~ C. 

Define SeD) to be this complex vector space R/(R(D) + M), and de­
fine O'(D) to be the dual space 

O'(D) = S(D)* = HomdR/(R(D) + M), C). 

Then 'P., is an element of this space O'(D). What we have done is 
construct a natural homomorphism from OeD) to O'(D), taking U) to 
<p.,. In the next section we will show that this homomorphism is an 
isomorphism. 

Exercise 21.7. Show that the homomorphism from OeD) to O'(D) is 
injective, and that a meromorphic I-form U) is in OeD) if and only if 
<p", vanishes on R(D). 

In this section we prove that O'(D) has some properties we would 
like O(D) to have. As in the preceding section, the main idea is to 
compare O'(D) and O'(D + Q) for Q a point in X. 

Since R(D) is contained in R(D + Q), there is a canonical surjection 
from R/(R(D) + M) onto R/(R(D + Q) + M), i.e., from SeD) onto 
SeD + Q). The kernel is (R(D + Q) + M)/(R(D) + M). 

Lemma 21.8. For any divisor D and point Q, 

dim«R(D + Q) + M)/(R(D) + M» ~ 1, 

with equality if and only if L(D) = L(D + Q). 
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Proof. Choose a germ gQ at Q such that ordQ(gQ) = -ordQ(D) - 1, 
and let gp = 0 for P ~ Q. The adele g = (gp) gives a generator of the 
quotient space in the lemma. Indeed ifJ= (fp) is any adele in R(D + Q), 
then there is some scalar A so that J - Ag is in R(D). This element 
will be nonzero exactly when there is no h in M with g - h in R(D), 
which says exactly that there is no h in L(D + Q) that is not in 
L~. 0 

Let k be the integer from Lemma 21.6. 

Lemma 21.9. 

(a) If D is a divisor such that dim(L(D» = deg(D) + 1 - k, then 
R(D) + M = R, so SeD) = 0 and fl'(D) = O. 

(b) For any D the space SeD) has finite dimension, so its dual space 
fl'(D) has the same finite dimension. 

(c) For any divisor D and point Q, fl'(D + Q) is a subspace oj fl'(D) , 
and 

dim(fl'(D)/fl'(D + Q» :::; 1, 

with equality if and only if L(D) = L(D + Q). 
(d) For any nonzero meromorphic Junction J on X, 

dim(fl'(D + Div(f))) :;: dim(fl'(D». 

Proof. If dim(L(D» = deg(D) + 1 - k, then for any point Q we know 
that dim(L(D + Q» = deg(D + Q) + 1 - k (see Exercise 21.2), i.e., 
L(D + Q) ~ L(D). By the preceding lemma, this means that 
R(D + Q) C R(D) + M. Continuing to add points to D + Q, we see 
that R(E) C R(D) + M for all divisors E such that E ~ D. But any ele­
ment of R is in R(E) for some such E, so R = R(D) + M, which 
proves (a). 

For (b), take a sequence of surjections S(D)-S(D + QI)_ 
SeD + QI + Q2)- ... -SeE), until E is large enough so (a) implies 
that See) is zero. Lemma 21.8 implies that the kernel of each of these 
surjections is at most one dimensional, so by induction each SeD) 
must be finite dimensional. 

Dual to the exact sequence 

o ~ (L(D + Q) + M)/(L(D) + M) ~ SeD) ~ SeD + Q) ~ 0 

is the exact sequence 

o ~ fl'(D + Q) ~ fl'(D) ~ «L(D + Q) + M)/(L(D) + M»* ~ O. 

This shows that the inclusion fl'(D + Q) ~ fl'(D) is either an iso-
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morphism or its cokemel has dimension one. By the preceding lemma, 
we see that the latter occurs exactly when L(D) = L(D + Q), which 
proves (c). 

For (d), there is a natural isomorphism from R(D + Div(f)) to R(D) 
that takes f to f· f. This determines an isomorphism from S(D + Div(f)) 
to S(D), and, taking duals, from O'(D) to O'(D + Div(f)). 0 

Lemma 21.10. For any divisor D on X, 

dim(L(D)) = deg(D) + 1 - k + dim(O'(D)). 

Proof. This equation is certainly true if deg(D) ~ N, with N as in 
Lemma 21.6, for then dim(L(D)) = deg(D) + 1 - k and dim(O'(D)) = 0 
by Lemma 21.6 and Lemma 21.9(a). Since we can get between any 
two divisors by successively adding and subtracting points, it suffices 
to show that the equation is true for a divisor D if and only if it is 
true for D + Q, where Q is any point. Comparing the two equations, 
what must be proved is that 

dim(L(D + Q)) - dim(L(D)) + dim(O'(D)) - dim(O'(D + Q)) = 1, 

and this is simply a translation of (c) in the preceding lemma. 0 

Let 0' be the union of all O'(D), taken over all divisors D. An 
element of 0' is a homomorphism from R to C which vanishes on M 
and vanishes on some (unspecified) R(D). The space n of mero­
morphic differentials on X maps to n', and we want to see that this 
is an isomorphism. We have seen that if w is any nonzero mero­
morphic differential, any other can be written in the form f· w for 
some meromorphic functionJ. This means that n is a one-dimensional 
vector space over the field M. The space 0' is also a vector space 
over M, by the rule that if f is in M and '1': R~ C, then f· 'I' is the 
homomorphism which takes f to 'P(f' f). 

Lemma 21.11. The dimension of 0' over M is 1. 

Proof. We know that 0' is not zero, for example, by applying the 
preceding lemma for D of small degree to see that O'(D) ~ O. To 
complete the proof we must show that two elements 'I' and I\! in 0' 
cannot be independent over M. If this were the case, then for any 
elements hi, ... , hn of M which are independent over C, it would 
follow that hl'P, ... , hn'P, hll\!, ... , hnl\! are elements of 0' which 
are independent over C. Take a divisor E which is large enough so 
that 'I' and I\! are in O'(E). Suppose the functions hi are a basis for 
L(D) for some D. Then the 2n products hi'P and hil\! are in O'(E - D), 



2Ic. Riemann-Roch 303 

so 

dim(!l'(E - D» ~ 2dim(L(D» ~ 2(deg(D) + 1 - k). 

By Lemma 21.10, 

dim(O'(E - D» = k - 1 - deg(E - D) + dim(L(E - D». 

Now deg(E - D) = deg(E) - deg(D), and L(E - D) = 0 provided 
deg(E - D) < O. So if we take any D with deg(D) > deg(E), the dis­
plays lead to the inequality 

2(deg(D) + 1 - k) s; deg(D) - deg(E) + k - 1 , 

which says that deg(D) s; 3k - 3 - deg(E). But we may take D of 
arbitrarily large degree, which is a contradiction. D 

The canonical homomorphism from the space 0 of meromorphic 
differentials to the space 0' is a homomorphism of vector spaces over 
the field M. It is not identically zero by Exercise 21.7, since one can 
certainly find meromorphic differentials wand adeles f such that there 
is exactly one point P at which Ip . w has a simple pole. But since 
both vector spaces have dimension one over M, it follows that the 
map O~ 0' is an isomorphism. We saw at the beginning that the 
subspace O(D) of 0 is mapped into O'(D) by this map, and it follows 
from Exercise 21.7 that O(D) maps isomorphic ally onto O'(D). So 
we have proved 

Proposition 21.12. The canonical map O(D)~O'(D) is an iso­
morphism. 

Exercise 21.13. Given germs 11, ... ,In of meromorphic functions 
at distinct points PI> ... , Pn of X, and integers ml> ... , mn , show 
that there is a meromorphic function I so that ordpi(f - /;) ~ mi for 
1 s; i s; n. 

2Ie. Riemann-Roeh 

From Lemma 21.10 and Proposition 21.12 we have the formula 

(*) dim(L(D» = deg(D) + 1 - k + dim(O(D» 

for all divisors D on X, valid for some integer k which we do not yet 
know. We can specialize (*) to some cases where we know some-
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thing. For example, if we take D = 0, L(O) = C, and the formula says 
that I = 0 + I - k + dim(O(O», i.e., that the space of holomorphic 
I-forms has dimension k. Fix any meromorphic divisor 00, and let K 
be the divisor of 00, which we know is a divisor of degree 2g - 2. 
Applying Lemma 21.4(b) with D = K, we get 

dim(O(K» = dim(L(K - K» = dim(L(O» = I, 

and applying the same lemma with D = 0, we get 

dim(L(K» = dim(O(O» = k. 

Now apply (*) with D = K, yielding 

k = (2g - 2) + I - k + 1 , 

which means that k must be g. So we have proved: 

Theorem 21.14 (Riemann-Roch Theorem). If X is the Riemann sur­
face of an algebraic curve, then for any divisor D on X, 

dim(L(D» = deg(D) + I - g + dim(O(D» 
= deg(D) + I - g + dim(L(K - D», 

where K is the divisor of any nonzero meromorphic Ijorm on X. 

Corollary 21.15. The space of holomorphic differentials has dimen­
sion g. 

This proves that H'(X;C) = OI,O(X)EBOO,I(X). 

Corollary 21.16. dim(L(D» ~ deg(D) + 1 - g, with equality when­
ever deg(D) ~ 2g - I. 

Corollary 21.17. For any two points P and Q on X, there is a mero­
morphic Ijorm cp with simple poles at P and Q and no other poles. 

Proof. Riemann-Roch for D = -P - Q gives 

o = -2+ l-g+dim(O(-P-Q», 

or dim(O( -P - Q» = g + 1. This means that there is a meromorphic 
1-form 'P that is in O( - P - Q) but not in 0(0). Since the sum of the 
residues is zero, 'P must have simple poles at both P and Q, with the 
residue at Q being minus the residue at P. D 

Corollary 21.18. If gx = 0, then X is isomorphic to S2. 

Proof. Take any point P. Since dim(L(P» ~ deg(P) + 1 - g = 2, there 
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is a nonconstant meromorphic function f with at most one pole. This 
is a mapping from X to S2 of degree 1, so is an isomorphism. 0 

Exercise 21.19. If gx = 1, show that there is an analytic mapping 
f: X ~ S2 of degree 2. Deduce that X is the Riemann surface of a 
curve W2 = Z(Z - l)(Z - A), A ~ 0, 1. 

Exercise 21.20. Assume that g = gx ~ 1. (a) Show that there are g 
distinct points PI, ... ,Pg on X so that a(P1 + ... + Pg) = O. 
(b) Show that there are points PI,..., P g on X so that 
a(P1 + ... + Pg) ~ O. (c) If g ~ 2, show that there is an analytic 
mapping f: X ~ S2 of degree at most g. In particular, if g = 2, X is 
hyperelliptic. 

Exercise 21.21. Show that the I-form 'P of Corollary 21.17 is unique 
up to multiplying by a nonzero scalar and adding a holomorphic 1-
form. Show that there is a unique such 'P whose residue at P is 1, 
whose residue at Q is -1, and so that I -y 'P is purely imaginative for 
all closed paths 'Y in X \ {P, Q}. 

Exercise 21.22. A real-valued function u on a Riemann surface is 
harmonic if it is locally the real part of an analytic function. A func­
tion which is harmonic in a punctured neighborhood of a point P is 
said to have a logarithmic pole at P if, with z a local coordinate at 
P, there is a nonzero real scalar a so that u - a . 10g(lzl) extends to be 
harmonic in a neighborhood of P. Show that for any two points P 
and Q on X, there is a harmonic function u on X \ {p, Q} that has 
logarithmic poles at P and Q. 

Exercise 21.23. For any point P on X, show that there is a mero­
morphic differential 'P on X with a double pole at P. Deduce that there 
is a harmonic function u on X \ {P} so that, if z = x + iy is a local 
coordinate at P, then u - x/(x2 + l) is harmonic near P. 

Historically, the arguments went in the reverse order: harmonic 
functions were found with the properties in the preceding exercises, 
and these were used to find meromorphic I-forms and to prove Rie­
mann-Roch. By regarding harmonic functions as integrals of fluid 
flows or electric fields on X, one can give intuitive arguments for 
their existence, say by putting sources and sinks at the points P and 
Q. For a lively discussion along these lines, see Klein (1893). 

Exercise 21.24. Given any sequence Ph P2 , ••• ,Pn , ••• of points 
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in X, show that there are exactly g positive integers k, all in the in­
terval [1, 2g - 1], such that 

L(P, + ... +Pk-I) = L(p, + ... +Pk). 

When all Pi are taken to be a fixed point P, these integers are called 
the Weierstrass gaps at P. 

Exercise 21.25. Suppose D and E are divisors on X such that D + E 
is the divisor of a meromorphic I-form. Prove Brill-Noether rec­
iprocity: dim(L(D» - dim(L(E» = If2(deg(D) - deg(E». 

Exercise 21.26. If z: X ~ S2 is an analytic mapping of degree n, and 
Q in S2 is a point such that z -I(Q) = {P I, ••. , P n} has n distinct 
points, use Riemann-Roch to show that there is a meromorphic func­
tion w on X so that w(P I), ... , w(P n) are distinct complex numbers. 
If F(z, w) = 0 is the irreducible equation for w over (:(z) (with de­
nominators cleared), show that X is isomorphic to the Riemann sur­
face of F. 

Once one knows Riemann-Roch for a general compact Riemann 
surface X, the preceding exercise shows that X comes from an alge­
braic curve. 

Exercise 21.27. Show that the Riemann surface X of the polynomial 
W4 + Z4 - 1 = 0 has genus 3, but X is not hyperelliptic. Show in fact 
that dimO(2P) = 1 for all P in X. 

2Id. The Abel-Jacobi Theorem 

In this section we prove the assertions made in §20d. The first is 
Abel's criterion for when a divisor D = '2:.miPi is a divisor of a mero­
morphic function: it must have degree zero and be in the kernel of 
the Abel-Jacobi map. We use the notation of that section. 

Theorem 21.28 (Abel's Theorem). There is a meromorphic function 
f on X with Div(f) = D if and only if deg(D) = 0 and [D] = 0 in J(X). 

We first sketch the proof of the necessity of these conditions. Sup­
pose f is a nonconstant meromorphic function on X, giving a mapping 
of degree n from X to s2, with branch set S. Corollary 19.5 shows 
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that deg(Div(f» = O. Fix a point Po in X. Consider the mapping from 
S2 \ S to J(X) that takes a point Q to the point L7=1 [Pi - Po], where 
PI ... , Pn are the points of X in rl(Q). It is not hard to see that 
this extends continuously to the branch points, giving a continuous 
mapping from S2 to J(X). Since S2 is simply connected, by Propo­
sition 13.5 this mapping factors: S2~ Cg ~ U / A. By looking locally, 
one can verify that each of the g coordinate maps are analytic func­
tions on S2. But analytic functions on S2 are constant, so the given 
map from S2 to J(X) must be constant. The fact that the value at 0 
is equal to the value at 00 is precisely the condition that 
[Div(f)] = [L ordp(f) . P] = 0 in J(X). 

We tum now to the converse. Let D be a divisor of degree zero in 
the kernel of the Abel-Jacobi map. We must show that D is the divi­
sor of a meromorphic function. The motivation for the proof comes 
from the fact that if J is a meromorphic function on X, and we set 
'P = dJ/J, then'P is a meromorphic differential on X with at most sim­
ple poles and, in fact, for any P, Resp('P) = ordp(f). We will look for 
a meromorphic I-form 'P with at most simple poles among the points 
appearing in D, such that Resp('P) = ordp(D) for all P. Then we will 
define a function J on X by the formula J(P) = exp(f~o 'P), where Po 
is a fixed point. Provided this is well defined, it will satisfy the equa­
tion 'P = dJlJ, and so we will have ordp(j) = ordp(D) for all P, so 
Div(f) =D. 

Since the degree of D is zero, we may write D = L~=I(Pi - Q;), for 
some points PI,"" Qr (not necessarily unique). Let 
S={P., ... ,P"Q., ... ,Qr}' We know by Corollary 21.17 that 
there is a meromorphic I-form 'Pi with simple poles at Pi and Qi (only), 
and with residues I at Pi and -1 at Qi' Let 'P = ~~=I 'Pi' We want to 
defineJ(P) = exp(f~o'P), where the integral is along any path from Po 
to P in X \ S. This will be well defined provided the integral of 'P 
along any closed path T in X \ S is in 2-rrilL. The form 'P is only defined 
up to the addition of a holomorphic I-form, so the proof of the Abel­
Jacobi theorem is reduced to the 

Claim 21.29. There is a holomorphic I{orm w so that fA(fI- w) is 
in 2 TrilL Jor all I-cycles T on X \ S. 

We need the following refinement of Exercise 18.8. We take 2g 
closed arcs aj and bj as in §17c. Cutting the surface open along these 
arcs, we realize it as the identification space of a plane polygon II 
with sides identified. These choices can be made so that the map from 
II to X is a diffeomorphism on the interior of II, and has a ~"" exten-
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sion to a neighborhood of II. By means of this map I-forms on X 
correspond to I-forms on II. Let 00 be a closed I-form on X, and 
define a function h on the closure of II by the formula h(P) = f~ow, 
for some fixed point Po in II. Let 'I' be a closed I-form defined on a 
neighborhood of the union of these 2g arcs in X, so 'I' determines a 
I-form on a neighborhood of the boundary all of II. 

Lemma 21.30. 

Proof. Note first that if P and p' are corresponding points of the 
boundary edges aj and aj -I of II, then 

h(P) - h(P' ) = - L 00 , 
} 

as one sees by integrating along a path from p' to P, noting that the 
integrals over corresponding parts of aj and aj -I cancel. 

Therefore 

Lh'P+ L_,h'P 
J J 

L (h(P) - h(P I » 'P(P) 
J 

( (- ( (0)'1' = - ( w· ( 'I' 
Jaj Jbj Jbj Jaj 

Similarly if Q and Q' are corresponding points of bj and bj - I , then 

h(Q) - h(Q') = Lw, 
J 

so 

Lh'P+L_,h'P 
J J 

L (h(Q) - h(Q'» 'P(Q) 
J 
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Adding over all the edges of the boundary of IT gives the identity of 
~~~. 0 

To apply the lemma in our situation, the arcs aj' bj must be taken 
so that none of them goes through a point of S. Let U j be a path from 
Qj to P j which does not hit any of the arcs aj or bj . 

Lemma 21.31. For any holomorphic Ijorm won X, 

Proof. We apply the preceding lemma. We must evaluate Ianh<p, with 
h(P) = I~o w. The Residue Formula in the polygon IT gives 

in h<p = (21Ti) ~ Resp(h<p) = (21Ti)(~ h(P;) - ~ h(Q;)) , 

the last since <pj has simple poles, with residues 1 and -1 at P j and 
Qj. And 

by definition. So Lemma 21.30 gives the required conclusion. 0 

The hypothesis that D is in the kernel of the Abel-Jacobi map means 
that there is a I-cycle 'Y such that L~= I I!Ii W = I ~ w for all holomorphic 
i-forms w. So we have, for all holomorphic w, 

We can now prove Claim 21.29. Since a basis of H,(X \ S) is given 
by the cycles aj' bj , and small circles around the points in S (either 
by Mayer-Vietoris or Problem 17.12), it suffices to find a holo­
morphic I-form w such that the integral of <p - w around all these 
cycles is in 21TiZ. Note that for any such <p, the integral around a 
small circle around a point in S is in 21TiZ, since all the residues of 
<p are integers. To start, let 'A.j = I aj <p. Subtracting the holomorphic 
1-form L'A.j Wj from <p, we can assume that I aj <p = 0 for all j. The pre­
ceding formula, with w = Wk, gives 

(21Ti) f Wk = ( <p. 
"Y Jb, 
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Write 'Y = "J.mA + njbj , with integer coefficients mj' nj. Then 

L ook = ~ ( mj Ii ook + nj ii ook) 

g g 

= mk + ~ nj ii ook = mk + ~ nj ik ooj. 

the last step by the symmetry of Corollary 20.22. But now if we set 
00 = 27Ti"J.njooj, this shows that fbk (IP - 00) = 27Timk. Therefore 

1 (IP-OO)= -1 00 = - 27Til2:njooj= - 27Tink, 
ale ale ak 

and this completes the proof of the claim, and hence of Abel's theorem. 

Theorem 21.32 (Jacobi Inversion). The Abel-Jacobi map from the 
group of cycles of degree zero to the Jacobian J(X) is surjective. 

This means that we have an exact sequence 

° ~ C* ~ M(X)* ~ Zo(X) ~ J(X) ~ 0, 

which realizes the torus J(X) = Cg / A as the quotient of the group of 
divisors of degree zero by the subgroup of divisors of meromorphic 
functions. 

The proof, which we only sketch, requires a few basic facts about 
holomorphic mappings of several complex variables. Let Xg be the g­
fold Cartesian product of X with itself, which is a g-dimensional com­
plex manifold. Let 

U g : xg ~ J(X) 

be the map which takes (PI, ... , Pg ) to A(LP j - gPo), where A is 
the Abel-Jacobi map, and Po is any fixed point on X. It suffices to 
prove that ug is surjective. The Jacobian J(X) = P / A gets the struc­
ture of a complex manifold so that the quotient mapping Cg ~ J(X) 
is a local isomorphism. 

Exercise 21.33. Verify that ug is a holomorphic (analytic) mapping 
of complex manifolds. 

We claim next that there are distinct points PI, . . . , P g in X such 
that the Jacobian determinant of ug at the point (PI' ... , Pg ) is not 
zero. Once this is verified, it follows that the image of ug contains 
an open set. Since the image of the Abel-Jacobi map is a subgroup, 
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and J(X) is compact, it follows that the image must be all of J(X). 
To prove the claim, take any distinct points PI, . . . , P g' Let Zj be 
a local coordinate at Pj , and write Wi = /;,j dZj near Pj . 

Exercise 21.34. Verify that, in suitable coordinates, the Jacobian ma­
trix of cxg at (PI, ... , Pg) is (/;,j(Pj)), 

Now take the points PI, ... , Pg as in Exercise 21.20(a). If the 
Jacobian determinant det(/;.j(P)) of cxg vanishes at (PI, ... ,Pg), 

then there are g complex numbers AI, ... , Ag , not all zero, such 
that 

(AIWI + ... + AgWg)(P) = 0 

for all j. But this means that n(P I + ... + Pg) is not zero, which 
contradicts Exercise 21.20(a). 



PART XI 

HIGHER DIMENSIONS 

This last part is designed to introduce the reader to a few of the higher­
dimensional generalizations of the ideas we have studied in earlier 
chapters, both to unify these ideas, and to indicate a few of the di­
rections one may go if one continues in algebraic topology. It is not 
written as the culmination or goal of the rest of the course, but rather 
as a brief introduction to the general theory. How accessible or useful 
it may be depends on several factors, such as background in manifold 
theory, and ability to generalize from the special cases we have seen 
to higher dimensions (an ability, it seems to me, often underestimated 
in our teaching). For systematic developments of the ideas of this 
part, the books of Bredon (1993), Bott and Tu (1980), Greenberg and 
Harper (1981), and Massey (1991) are recommended. 

We have studied the first homology group H1X, the fundamental 
group 'lTl(X,X), and the first De Rham cohomology group H1X, which 
were sufficient to capture most of the topology of the spaces we have 
been most concerned with: open sets in the plane and surfaces, and 
an occasional graph. Each of these is the first in a sequence of groups 
that are used to study similar questions for higher-dimensional spaces. 
In contrast to many earlier chapters, the tone in this final part is de­
signed to be more formal, concise, and abstract; we are depending 
on your experience with special cases and low-dimensional examples 
for motivation. 

We start by recalling some three-dimensional calculus, to indicate 
the sort of "topology" these higher groups might measure. Then we 
take a quick look at knots in 3-space, mainly because knot theory is 
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an interesting and important subject in its own right, and also because 
it gives us a chance to use some of the tools developed in earlier 
chapters. We also define the higher homotopy groups of a space and 
the De Rham cohomology groups. 

In the next chapter we define higher homology groups, and prove 
their basic properties. We indicate some of the ways they can be used 
to extend ideas we have looked at in the plane or on surfaces to higher 
dimensions. In particular, they give a simple extension of the notion 
of degree, and they lead to generalizations of the Jordan curve theo­
rem. 

In the final chapter we include a couple of "diagram chasing" facts 
from algebra, one of which can be used to compare different ho­
mology and cohomology groups, the other to construct long exact 
sequences such as Mayer - Vietoris sequences. (Having proved this 
once and for all, one does not have to keep doing the same sort of 
manipulations we have done to define boundary and coboundary maps.) 
Finally, we give proofs of the basic duality theorems between ho­
mology and De Rham cohomology on manifolds. 

The sections involving higher De Rham cohomology on manifolds 
are written for those with a working knowledge of differential forms 
on differentiable manifolds. A reader without this background can 
skip or skim this part (or stick to low dimensions and/or open sets 
in ~n). The construction of higher homology groups and its appli­
cations to higher-dimensional analogues of the theorems we saw at 
the beginning of the course do not depend on any of this, however, 
and a reader who has mastered the earlier chapters should be able to 
work through this without any gaps. We have included Borsuk's theo­
rem that maps of spheres that preserve antipodal pairs have odd de­
gree, since this allows generalizing all the results we proved about 
winding numbers to higher dimensions. 

A few remarks about other approaches may be in order. It is pos­
sible to define the degree of a mapping of a sphere to itself without 
the notions of homology, and to prove many of its properties. Those 
with a knowledge of differential topology can do this by approxi­
mating a continuous map by a differentiable one, and following the 
pattern of Problem 3.32 for the winding number. (For a nice discus­
sion in the ~oo context, see Milnor (1965)). There are also elementary 
approaches using simplicial approximations, although considerable care 
is required to make the arguments rigorous. (In fact, the difficulties 
in this approach seem to us much greater than those involved in de­
veloping general homology theory-not to mention the fact that, hav­
ing done the latter, one can apply it in many other situations.) 
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We might also mention that we have used cubes rather than the 
simplices that are common in many other treatments. Simplices have 
a slight advantage that one has no "degenerate" maps to ignore, but 
cubes are simpler for homotopies and product spaces in general, and 
they are more convenient for integrating differential forms. (In fact, 
it is not hard-as we do in §24d-to use cubes to calculate the sim­
plicial homology of spaces that are triangulated.) 

Finally, a word on terminology: here manifolds always are assumed 
to have a countable basis for their topology. 



CHAPTER 22 

Toward Higher Dimensions 

22a. Holes and Forms in 3-Space 

On an open set U in [R3 we have: O-forms, which are just C(;oo functions 
on U; Ijorms, which are expressions 

pdx + qdy + rdz, 

where p and q and rare C€oc functions on U; 2-forms, which are expres­
sions 

udydz + vdxdz + wdxdy, 

where u and v and w are C(;oo functions on U; and 3-forms, which are 
expressions 

hdxdydz, 

where h is a C(;oo function on U. 
These fonns are designed for integrating, just as in the plane. A 0-

fonn is evaluated at points. The integral of a I-fonn over a differ­
entiable path 'Y: [a, b] ~ U is defined exactly as for the plane: 

f pdx + qdy + rdz = ib (P('Y(t» dx + q('Y(t» dy + r('Y(t» dz) dt, 
"I a dt dt dt 

where 'Y(t) = (x(t) , y(t), z(t». A 2-fonn can be integrated over a dif-

317 
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ferentiable map f: R-,; U from a rectangle R = [a, b] x [c, d] to U: 

II udydz + vdxdz + wdxdy = 
r 

If( a(y,z) a(x,z) a(x,y)) 
u(f(s, t)) --+ v(f(s, t)) --+ w(f(s, t)) --" ds dt , 

a(s, t) a(s, t) a(s, t) 
R 

where, for [(s,t) = (x(s, t),y(s,t), z(s,t)), and a(x,y)/a(s,t) denotes 
ax/as ay/at- ax/at ay/as, and similarly for the other terms. A 3-
form is integrated over a differentiable map II: B -'; U where B is a 
rectangular box [a, b] x [c, d] X [e,f]: 

Iff Iff a(x,y,z) 
hdxdydz = h(II(s, t, u)) dsdtdu, 

a(s, t, u) 
II B 

where II(s, t, u) = (x(s, t, U),y(s, t, U),z(s, t, u)), and a(x,y,z)/a(s,t,u) 
denotes the Jacobian determinant. 

The differential df of a O-form f is a I-form defined by 

af af af 
df = -dx+-dy+-dz. 

ax ay az 

The fundamental theorem of calculus gives I'/df= f('Y(b)) - f('Y(a)) 
for'Y a path as above. The differential of a I-form is a 2-form: 

d(pdx + qdy + rdz) 

= (ar _ aq) dydz + (ar _ ap ) dxdz + (aq _ ap ) dxdy, 
~ ~ b ~ b ~ 

and Green's theorem (for rectangles in the plane) gives II rdw = Iarw, 
where the integral around the boundary of the rectangle is defined as 
in Part 1. Finally, the differential of a 2-form is a 3-form: 

d(udydz + vdxdz + wdxdy) = (au _ av + aw) dxdydz, 
ax ay az 

and Stokes theorem says that III II dw = IIall w. 

Exercise 22.1. State and prove Stokes' theorem for a box, and define 
the boundary of II as a sum and difference of the restrictions of II to 
the six sides of the box, assigning correct signs to each so the above 
formula holds. 

We define the differential of a 3-form to be O. A simple calculation 
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using the equality of mixed derivatives shows that if f is a O-form, 
then d(df) = 0, and if w is a I-form, then d(dw) = O. A k-form w is 
closed if dw = 0, and exact if w = dlJ- for some (k - I)-form IJ-. So all 
exact forms are closed, and we have the same question as in the plane: 
when are closed forms exact? We can define the De Rham groups 
ltv as before: for k = 0, 1, 2, or 3, 

HkV = {closed k-forms on V}/{exact k-forms on V}. 

The question becomes: How does the topology of V influence the size 
of the vector spaces HkV? 

For I-forms, the answer is very similar to the case of open sets in 
the plane. A closed I-form w on V is exact if and only if integral of 
w over paths in V depend only on the endpoints, or all integrals over 
closed paths are zero. For example, if U is the complement of the z­
axis, the I-form w = ( -y dx + x dy) / (~ + /) is closed but not exact; 
as we know, an integral of w around a circle in the xy-plane is 21T. 
Notice that taking a point or a closed ball out of ~3 does not count 
as a "hole" as far as I-forms in 3-space is concerned. In fact: 

Exercise 22.2. Show that if HI U = 0 then every closed I-form on V 
is exact. 

For 2-forms, however, if U is the complement of a point, there are 
closed forms that are not exact. For example, let 

xdydz - ydxdz + zdxdy 
w = 

Exercise 22.3. Show that w is closed. Fix a positive number p, and 
let f: [0,21T] x [_1/21T, 1/21T]~ ~3 be the spherical coordinate map­
ping, i.e., 

f(tt, <p) = (p cos({) cos(<p), p sin({) cos(<p), p sin(<p». 

Compute the integral of w over f, and deduce that w is not exact. 

Exercise 22.4. Use this 2-form w to define the engulfing number around 
o of a differentiable map from S2 to ~3 \ {O}. Can you prove any an­
alogues of the winding number? 

We will see in the next chapter how to define second homology 
groups H2U that have the same relation to 2-forms and H2U as the 
first homology H1U has to I-forms and HIV. 

Some of these ideas may be more familiar in vector field language: 
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a I-form pdx + qdy + rdz can be identified with the vector field 
pi + qj + rk, the 2-form udydz + vdxdz + wdxdy with the vector field 
ui - vj + wk, and the 3-form hdxdydz with the function h. In this 
language, the differential df of a function corresponds to the gradient 
grad(f), the differential of a I-form to the curl of a vector field, and 
the differential of a 2-form becomes the divergence of a vector field: 

ox of of 
grad(f) = -i+-j +-k; 

ox oy oz 

curl(pi + qj + rk) = (or _ Oq)i + (OP _ or)j + (Oq _ OP)k; 
oy oz oz ox ox oy 

ou ov ow 
div(ui + vj + wk) = - + - + -; 

ox oy OZ 

and the equations dod = 0 say that curl 0 grad = 0 and div 0 curl = o. 
The integral of the vector field corresponding to a 2-form over a sur­
face can be interpreted as the integral of a dot product with an out­
ward-pointing normal. 

Problem 22.5. (a) Generalize the discussion of §2c to fluid flows on 
open sets in 3-space. Interpret the engulfing number as the flux across 
a surface of a flow with source at the origin (see Exercise 2.26). 
(b) Define harmonic functions of three variables, and generalize Ex­
ercise 2.21 and Problems 2.22-2.25. 

22b. Knots 

A knot is a subset K of rR3 or the 3-sphere S3 that is homeomorphic 
to a circle. Call two knots equivalent if there is a homeomorphism of 
rR3 (or S3) with itself that takes one homeomorphic ally onto the other, 
and is orientation-preserving. (For a precise definition of "orientation­
preserving," see §23c.) A weaker notion is similarity, which is the 
same except ignoring orientation, so "mirror image" knots are always 
similar. The generalized Jordan curve theorem, which we will prove 
in the next chapter, implies that the complement of X is connected, 
that its first homology group is infinite cyclic, and its other homology 
groups vanish. In particular, these groups are the same for all knots. 
However, the fundamental group 'iT I (S3 \ X) or 'iT I (rR3 \ X) can some­
times be used to distinguish knots from each other. Note that these 
fundamental groups are the same for similar knots, so they can be 
used as a possible invariant. 
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Exercise 22.6. If K C ~3 is a knot, and ~3 is identified with the com­
plement of a point in S3, by stereographic projection, show that the 
fundamental group of ~3 \ K is isomorphic to the fundamental group 
of S3 \K. 

The standard embedding K = Sl C ~2 C ~3 C S3 is called the trivial 
knot, and any knot equivalent to this is called trivial. We want to use 
fundamental groups to give one example of a knot that is not trivial. 
We will do this by identifying S3 C ~4 = (:2 with the set of pairs (z, w) 
of complex numbers such that Izl2 + Iwl2 = 1, and constructing a knot 
K that is the intersection of S3 with a complex plane curve that has 
a singUlarity at the origin. This is more than a convenient way to find 
an example: the knots that arise this way are important invariants of 
singularities of plane curves! In this language, the trivial knot can be 
realized as the intersection of S3, with the "curve" w = o. 

Exercise 22.7. Show that the fundamental group of the complement 
of the trivial knot is isomorphic to Z. Show, in fact, that the circle 
{CO, w): Iwl = I} is a deformation retract of the complement of circle 
{(z,O): Izl = I} in S3. 

In nature coverings often arise by starting with a mapping that is 
not a covering, but becomes one after throwing away a locus where 
it fails to be a covering. We have seen this for an analytic mapping 
between Riemann surfaces in Chapter 19, where only a finite set had 
to be thrown away. With appropriate hypotheses, such a mapping is 
called a "branched covering," with the bad set the "branch locus." 
Here is another example. Consider the mapping /: (} ~ ([2 given by 
the formula/(u, v) = (u, v3 + uv). The inverse image of a point (z, w) 
has three points if the equation v3 + zv = w has three distinct solutions 
for the variable v, and one or two points otherwise. 

Exercise 22.8. Show that rl(z, w) has three points if and only if 
4i + 27w2 ¥- o. If 4z3 + 27w2 = 0, but (z, w) ¥- (0,0), the inverse im­
age has two points, and for (z, w) = (0,0), the inverse image has one 
point. 

Let V C (:2 be the plane curve 4z3 + 27w2 = 0, which is the branch 
locus of the above mapping f. Let K be the intersection of V with S3: 

V = {(z,w):4z3 +27w2=0}, K = vns3 • 

We claim first that K is homeomorphic to a circle. 
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Exercise 22.9. Show that the mapping e2'frit ~ ( _ae4'frit, beMrit ), where 
a is the positive solution to the equation 4a3 + 27a2 = 27 and 
b = ~, is a homeomorphism of S I onto K. 

We will consider the mapping (:2 \rl(V)~ (:2 \ V determined by 
j, and the restriction 

p: Y=r l (S3\K) ~ S3\K=X, (u,v) ~ (u,v3+uv). 

Take x = (1, 0) as the base point in X, and y = (1, 0) as the base point 
in Y. Note that p-I(X) = {(1, 0), (1, i), (1, -i)}. 

Claim 22.10. (1) p is a three-sheeted covering map; (2) Y is con­
nected; and (3) p is not a regular covering. 

It follows from this claim that 'TT1(S3 \ K, x) is not abelian, since 
every connected covering of a manifold with an abelian fundamental 
group is regular. In particular, K is not a trivial knot. We leave the 
proofs of (1)-(3) as exercises, with the following comments. The 
essential point of (1) is showing that the roots of a polynomial are, 
locally where the roots are distinct, continuous functions of the coef­
ficients. In fact, they are analytic functions, by the same argument 
as in §20a. For (2), it suffices to show that the three points of rl(x) 
can be connected by paths. Consider the loop -y(t) = (e2'frit, 0), O:s t:s 1, 
at x. This lifts to the loop :V1(t) = (e2'frit,O) at y, and to the path 
:;;2(t) = (e2'frit, ie'frit) that goes from (1, i) to (1, -i) in Y. 

Exercise 22.11. Find a path of the form <r(t) = (A(t), iJl.(t», O:s t:s 1, 
with A(t) > 0 and Jl.(t);::: 0 for all t, that goes from (1,0) to (1, i) in Y. 

This exercise shows that Y is connected, and since :;; I is closed, 
and 12 is not, the covering is not regular. 

In fact, up to equivalence, K is an example of a torus knot. The 
torus T = rFe II? sits in S3 by the mapping that takes (x, y) to 
«(1/V2)i'frix, (1/V2)e2'friY). For any relatively prime pair of positive 
integers p and q, the image in the torus of the line with equation 
qy = px in ~2 is a knot that winds p times around the torus one way 
while it winds q times around the other way. This is called a torus 
knot of type (p, q). 

Exercise 22.12. (a) Show that the knot K = V n S3 considered above 
is equivalent to a torus knot of type (2,3). (b) Show that for relatively 
prime positive integers p and q the intersection of zq = w P with S3 is 
a torus knot of type (p, q). 
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The VanKampen theorem can be used to calculate the fundamental 
group of the complement of any torus knot. The 3-sphere is the union 
of two solid tori 

so T=A n B = {(z, w): Izl = Iwl = 1/Y2} is a torus. 

Problem 22.13. If K is a torus knot of type (p, q) in T, show that 
the fundamental groups of A \ K, B \ K, and T\ K are infinite cyclic, 
and the generator of the fundamental group of T \ K maps to the pth 
and qth powers of generators of the fundamental groups of A \ K and 
B \ K. Apply the Van Kampen theorem to show that the fundamental 
group of S3 \ K has two generators a and b, and one relation a P • bq = e, 
i.e., the fundamental group is F2/N, where F2 is the free group on a 
and b, and N is the least normal subgroup containing aP ' bq• 

For a knot of type (2,3), for example, one can see again that this 
group is not abelian by mapping it onto the symmetric group @:i3 on 
three letters, sending a to the transposition (1 2) and b to the per­
mutation (1 2 3). 

There are many knots that are not torus knots. For example, one 
can take a torus knot, and take a small tube around it, which is ho­
meomorphic to another torus, and put a torus knot on this. Repeating 
this construction arbitrarily often gives a class of knots which, re­
markably, are exactly the knots one gets from singularities of plane 
curves. There are many other knots, however. Moreover, there are 
some "wild" knots, such as "Antoine's necklace": 

The fundamental group of the complement of this knot is not even 
finitely generated. A piece of this is an embedding of a closed interval 
in ~3 such that the complement is not simply connected. 
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22c. Higher Homotopy Groups 

The higher homotopy groups 'IT k(X , x) are easier to define than higher 
homology or cohomology groups, although their calculation turns out 
to be far more challenging. Fix a base point So in the sphere S\ say 
the north pole: So = (0, ... ,0,1). Define 'ITiX,x) to be the set of 
homotopy classes of maps from Sk to X that map So to x; here a ho­
motopy between two such maps must preserve basepoints throughout 
the homotopy, i.e., H is a continuous map from Sk x [0, 1] to X, with 
H(so x t) = x for all 0::5 t::5 1. One can also define 'ITk(X, x) as the set 
of homotopy classes of maps from the standard k-cube [k to X that 
map the boundary of the cube to x, with homotopies also mapping 
the boundary to x throughout. 

Exercise 22.14. (a) Show that these two definitions agree by showing 
that Sk is homeomorphic to the space obtained by identifying all points 
of the boundary of [k to a point. (b) Show that 'ITk(X, x) = 0 for all 
k> 0 if X is contractible. (c) Show that a map f: X ~ Y determines 
mapsf*: 'ITk(X,x)~'ITlY,f(x)), which are functorial, and that maps 
that are homotopic through basepoint-preserving homotopies deter­
mine the same map on homotopy groups. (d) Show that 'ITk(Sn, so) = 0 
for O<k<n. 

The sets 'ITiX,x) can be made into groups, much as for the fun­
damental group. Using the definition by cubes, one can "multiply" 
two maps f and A from [k to X, defining f· A by using the first 
coordinate: 

A _ {f(2t l ' t2 , ••• ,tk), 0::5 II ::5 1/2, 
f· (t l ,···, tk ) - 1 

A(2tl -1,t2 , ••• ,tk), /2::5tl ::51. 

Exercise 22.15. (a) Show that this operation is well defined on ho­
motopy classes, and makes 'ITlX,x) into a group. (b) Show that the 
maps f* of Exercise 22.14 are homomorphisms of groups. 

Problem 22.16. Show that, for all k> 1, the group 'ITk(X,X) is abe­
lian. 

It is a fact that 'IT .(S·, so) = Z, although this is quite a bit harder to 
prove. Note that this gives a strong notion of degree for maps of sn 
to sn: it defines the degree, and shows that maps are classified up to 
homotopy by their degree. In the next chapter we will use chains to 
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define homology groups Hk(X), which are easier to calculate, and we 
will show that Hisn) = 7L and Hlsn) = 0 for all k> 0, k =Ie- n. In stark 
contrast with the homology groups, for k> n, the groups 'ITk(sn, so) 
need not be trivial. 

Exercise 22.17. Identifying S3 with {(z, w) E C2: Izl2 + Iwl2 = I}, show 
that the map that takes (z, w) to w / z E C C S2 determines a continuous 
mapping from S3 to S2. 

It is a fact that 'IT3(S2, so) =:; 7L, with generator given by the mapping 
of the preceding exercise, which is called a Hop! mapping (see Hilton 
(1961». We will show in the next chapter that the fibers of the Hopf 
mapping are circles that are "linked" together in S3, which is at least 
an indication of the nontriviality of the Hopf map. It should be pointed 
out, however, that in spite of enormous effort, which have produced 
calculations of many special cases, the groups 'ITlSn, so) are far from 
known in general. 

22d. Higher De Rham Cohomology 

All of the discussion of §22a generalizes to n variables, a k-form 
being an expression 

2./;li2' . . ikdxil dxi2 ... dxik = 2./Jdx[ 

the sum over all 1:5 i. < ... < ik :5 n, with the coefficients h1i2' . . ik 

C{6'" functions on an open set in IW. There is a differential d that takes 
a k-form to a (k + I)-form, and again dod = O. For U open in ~n one 
then gets De Rham groups HkU, the space of closed k-forms modulo 
the space of exact k-forms. The main complication is in keeping track 
of the signs. This is best done by introducing formally the "exterior 
algebra" structure that is already apparent in the plane and 3-space: 
one allows the differentials to be written in arbitrary order, but put 
in a sign whenever they are interchanged: dydx = -dxdy, together 
setting dxdx = O. (The usual notation for this exterior product is the 
wedge "/\," so one writes dx /\ dy in place of our dx dy.) Working this 
out properly belongs in an advanced calculus course. 

As with surfaces, one can define k-forms on an arbitrary differ­
entiable manifold as collections of k-forms on the coordinate neigh­
borhoods of a chart that transform properly on overlaps. If you know 
about differential forms on a manifold, it is not difficult to generalize 



326 22. Toward Higher Dimensions 

the idea of De Rham cohomology. Again there are differentials d from 
k-forms to (k + I)-forms, with dod = O. In this section we will assume 
familiarity with notions of manifolds and differential forms. If this 
applies to you, fine; if not, you can either stick to low dimensions 
where we have done it by hand, or assume this formalism in gen­
eral-or you can turn immediately to the next chapter, which does 
not depend on any of this. 

If X is a differentiable manifold, one can define the De Rham co­
homology group HkX as the vector space of closed k-forms modulo 
the subspace of exact k-forms. If f: X ~ Y is a differentiable map, 
there is a notion of pull-back of k-forms from Y to X, taking CJ) on Y 
to f*CJ) on X. This commutes with the differential, so determines a 
(functorial) homomorphism /*: Hky ~ HkX. 

Exercise 22.18. If X is a disjoint union of a finite or infinite number 
of manifolds Xi' show that HkX is the direct product of the HkXi , i.e., 
specifying a class on X is the same as specifying a class on each Xi . 

The Mayer-Vietoris exact sequence is defined with almost no change 
from the case with HO and HI. To define 

&:Hk(UnV) ~ Hk+I(UUV), 

as before, one uses a partition of unity subordinate to an open cov­
ering X = U U V by U and V to write a closed k-form CJ) on un V as 
the difference III - 112 of a k-form ilion U and a k-form 112 on V; 
there is a closed (k + I)-form on U U V that is dillon U and dll2 on 
V, and this (k + I)-form represents the image in Hk+I(U U V) of the 
class represented by CJ) in F(U n V). As before (and see §24a), one 
proves: 

Mayer-Vietoris Theorem 22.19. For any open sets U and V in a 
manifold of dimension n, there is an exact sequence 

0- HO(UuV) -4HoUeHoV ~ HO(UnV) 

-4 HI(UuV) -4 HIUeHIV ~ HI(UnV) -4 
... _ ... 

-4 H"(UUV) -4 H"UeH"V ~ Hn(UnV) - 0 

To calculate these groups, one needs in addition the 

Poincare Lemma 22.20. If p: X x ~~X is the projection, then 
p*: HkX~Hk(X x~) is an isomorphism. 
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The inverse isomorphism to p* is S*: Hk(X x ~)~Hk(X), where S 

is the embedding x ~ x x 0 of X in X x ~. The problem is to show 
that p* 0 s* = (s 0 p)* is the identity. The idea of the proof is to con­
struct a linear map H from the space of k-forms on X x ~ to the space 
of (k - I)-forms on X x ~, for each k, such that for any form w on 
XX~, 

(22.21) w - p* os*(w) = d(H(w» + H(d(w». 

(Note that the two H's and the two d's in this equation are defined 
on different spaces of forms!) It follows that if w is closed, then 
w - p*os*(w) = d(H(w», so w and p*os*(w) defme the same De Rham 
cohomology class. 

Problem 22.22. Show that any k-form w on X x ~ has a unique 
expression as a sum of a k-form not involving dt, where t is the co­
ordinate on ~, and one of the form dt /\ fJ., where fJ. is, in local co­
ordinates, a sum of expressions f· dx[, with the Xi coordinates on X, 
andfis a function on the product of the coordinate neighborhood with 
R Define H of such a form to be the form obtained by integrating 
fJ. with respect to the variable in ~ (so forms not involving dt are 
mapped to 0). For example, if XC~n, and fJ. is the formfdx[, then 
H(dt/\fJ.) is the form gdx[, where 

g(Xl, ... ,x.,t) = J:f(Xl' . .. ,xn,s)ds. 

Show that this operator is well defined and satisfies (22.21). 

For any real number t, if St: X ~ X x ~ maps x to x X t, then, since 
pOSt is the identity, it follows that St*: Hk(X X ~)~Hk(X) is the in­
verse to p*: Hk(X)~Hk(X x ~). In particular, the maps St* are the 
same for all t. This implies that if F: X x ~~ Y is differentiable, all 
the maps Ft: X~ Y, Flx) = F(x x t), determine the same maps 
Ft*: HkY~HkX. Indeed, Ft = Fost , so Ft* = st*oF* is independent 
of t. 

Problem 22.23. (a) Use the Poincare lemma and Mayer-Vietoris to 
calculate the De Rham cohomology of ~n, S", and ~n \ {O}. (b) Show 
that the (n - 1)-form Wn-l defined on ~n \ {O} by 

n 

L(_1)i-lXi dx1/\ . .. /\dxi-1/\dxi+1/\ . .. /\dxn 

i=l 

(xi + . . . + X~)"/2 
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is closed and gives a generator of Hn- 1(lRn \{O}). If f: sn-l---+ IRn \ {O} 
is differentiable, this can be used to define a higher-dimensional winding 
number, or "engulfing number": W(j,O) is the integral off*wn-l over 
sn-l, divided by the integral of W n-l over Sn-l. 

22e. Cohomology with Compact Supports 

There is another way to use differential forms to construct coho­
mology groups, for open sets in IRn or any ~'" manifolds, which we 
sketch briefly here. These cohomology groups are called De Rham 
groups with compact supports, and denoted H~X, the subscript c 
standing for "compact." These are defined exactly as for the ordinary 
De Rham groups, but using differential forms with compact support, 
i.e., forms for which there is some compact set K contained in X such 
that the form vanishes identically outside K. Define H~X to be the 
quotient space of the closed k-forms with compact support by the 
subspace of forms that are differentials of (k - I)-forms with compact 
support. 

If X is compact, of course, all forms have compact support, so 
H~X = HkX. In spite of this and the similarity of definition, however, 
these groups are quite different on noncompact manifolds. For ex­
ample, locally constant functions on a noncompact connected space 
can never have compact support unless they are identically zero: 

H~X = 0 if X is connected and not compact. 

In fact, we will see that the theories Hk and H~ behave in an opposite, 
or dual, way. By using a partition of unity as in Chapter 18, if X is 
an oriented n-manifold, one can integrate an n-form with compact 
support over the whole manifold. Using Stokes' theorem, it follows 
similarly that the integral of the differential of a closed (n - I)-form 
with compact support is zero, so one has a map 

It is easy to produce n-forms that are positive on a small piece of a 
coordinate neighborhood, and zero elsewhere, to see that this map is 
not zero. We will see in Chapter 24 that, if X is connected as well, 
then this map is an isomorphism. 

Exercise 22.24. If X is a disjoint union of a finite or infinite number 
of open sets Xi, show that H~X is the direct sum of the H~Xi' i.e., 
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specifying a class on X is the same as specifying a class on each Xi' 
except that all but a finite number must be zero. 

There is a Mayer-Vietoris exact sequence for cohomology with 
compact supports, but it is different from that without supports. First 
of all, there are no restriction maps, since if W has compact support 
on an open set, its restriction to an open subset may no longer have 
compact support. In fact, the maps go the other way: if VI is an open 
subset of Vz, any k-form W with compact support on VI extends by 
zero outside VI to define a k-form with (the same) compact support 
on Vz. Since any point in Vz \ VI has a neighborhood not meeting the 
support of w, this extension is <:(6"". This extension commutes with the 
differential map d, so determines a linear map 

H~(VI) ~ H~(Uz). 

In particular, for two open sets V and V, we have diagrams 

H~(V) 

/~ 
H~(VUV) . 

H~(V) 

We want to define a coboundary map 8: H~(UU V)~H!+I(Vn V). 
Given a class in H~(U n V), represent it by a closed k-form W with 
compact supports. We can write W as a sum WI + Wz, with WI and W2 
k-forms with compact supports in V and V, respectively. In fact, if 
tVI + tVz = I is a partition of unity subordinate to V and V, then WI = tVI • W 

and Wz = tVz· W are such forms. Let" be the (k + I)-form on V n V 
that is (the restriction 00 dWI . From the equation 0 = dw = dWI + dW2, 
we have dWI = -dwz on V n V, so the support of" is contained in 
the intersection of the supports of WI and Wz. In particular, " has 
compact support on V n V. Clearly" is closed. Set 

8([wD = ["l. 

It is not hard to verify that this is independent of the choice, and it 
is the familiar (by now) argument (and see §24a) to prove the 

Mayer-Vietoris Theorem 22.25 (Compact Supports). For open sets 
V and V in an n-dimensional manifold, there is an exact sequence 
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o - m(Un V) ~ H~U E9 H~V --=--. H~(U UV) 

~ H~(UnV) ~ H~UE9H~V --=--. H~(UUV) ~ 
... _ ... 

~ H~(unv) ~ H~UE9H~V ~ H~(UUV) - o. 
As before, to complete the basic tools for calculating these groups, 

we need to compare a manifold X and X x IR. This time the projection 
p from X x IR to X determines homomorphisms 

p*: H~(X x IR) ~ H~-I(X), 

by "integrating along the fiber," as follows. As in Problem 22.22, 
one can write a k-form with compact support of X x IR as a sum of 
a form not involving dt, and a k-form dt 1\ fJ., where fJ. is, in local 
coordinates, a sum of expressions f· dxl , with the Xi coordinates on 
X, and f a function on X x IR. Define p* of such a form dt 1\ f· dxl to 
be g . dxl , where 

g(xt. ... ,xn) = f/(X1, ... ,xn,t)dt 

(so forms not involving dt are mapped to zero). Note that these in­
tegrals are really over finite intervals, by the assumption of compact 
support. One checks that this is well defined, and that p*(dw) = d(p*w), 
so p* determines a map on cohomology classes as indicated. If 
s: X ~ X x IR is the inclusion X ~ x x 0, there is a map 

s*: H~-I(X) ~ H~(X x IR) 

determined by sending a form w to p(t) dt 1\ w, where p is any function 
with compact support on IR such that f':"" p(t) dt = 1. One checks that 
this commutes with d, so defines a map on cohomology, and that 
p* 0 s * is the identity. 

Poincare Lemma 22.26 (Compact Supports). For any manifold X, 
p*: H~(X X IR) ~ H~-I(X) is an isomorphism. 

Problem 22.27. Prove this by constructing an operator H from k­
forms with compact support to (k - I)-forms with compact support 
on X x IR. This operator should vanish on forms without "dt," and 
take dt 1\ fJ., where fJ. is, in local coordinates, a sum of expressions 
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f· dx/, to g' f.L, with 

g(XI, ... ,xn,t) = L/(Xl,' .. ,xn,s)ds 

-Lo p(s)ds (/(Xh ... ,xn,s)ds. 

Show that for any k-form w with compact support, w - s*p*w = 
d(H(w)) + H(d(w)) , and deduce that P* and s* determine inverse iso­
morphisms. 

Exercise 22.28. Calculate H~X, when X is 1Rn, Sn, and IRn \ {O}. 



CHAPTER 23 

Higher Homology 

23a. Homology Groups 

The groups HeX and H,X are the beginning of a series of abelian 
groups HkX, defined for any topological space X. Define a k-cube in 
X to be a continuous map r: [k ~ X, where [k is the k-dimensional 
cube, i.e., [= [0, 1], so 

[k = [0,1] x ... x [0, 1] C IRk. 

For any such mapping r, and any integer i between 1 and k, and any 
o :5 S :5 1, define a (k - 1 )-cube a: r, which is obtained by restricting 
r to the slice of the ith coordinate at s: 

a:r:[k-'~X, a:r(t" .. . ,tk-,)=f(t" ... ,ti-"S,ti , ... ,tk-,). 

Call r degenerate if, for some i, aIr is a constant function of s, and 
nondegenerate otherwise. (When k = 1, r is a path, and degenerate 
is the same as a constant path.) By convention, [0 = {O}, so as O-cube 
is given by a point in X; no O-cube is regarded as degenerate. 

Let eX be the free abelian group on the nondegenerate k-cubes in 
X, so an element of CkX is a finite linear combination Ln,,.f a' with 
e, a k-cube in X and na an integer. An element of CkX is called a 
cubical k-chain on X. It is useful to regard any finite linear combi­
nation Lnara of arbitrary k-cubes as an element of CkX, by simply 
discarding any degenerate k-cube ra that appears. (In other words, 
CkX is identified with the quotient of the free abelian group on all k­
cubes in X, modulo the subgroup generated by degenerate k-cubes.) 

332 
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If f: It~X is a k-cube in X, its boundary af in Ck-IX is defined 
by the formula 

k 

af = L(-li(a?f-a:f), 
;=1 

which is the sum of the 2k faces of f, each with a coefficient of + 1 
or -1. (Note that, even if f is nondegenerate, some of the a?f or 
at f occurring in the formula can be degenerate, so they are dis­
carded.) This is extended linearly to a homomorphism 

a: CkX ~ Ck-IX 

by the formula a(Lnafa) = Lna(afa). A k-chain is called a k-cycle if 
its boundary is zero; the k-cycles form a subgroup ZkX of CkX. The 
boundaries of (k + I)-chains form a subgroup BkX of CkX. 

Exercise 23.1. Show that for any (k + I)-cube f, a(af) = 0 in Ck-IX. 

From this exercise it follows that BkX is a subgroup of ZkX, so we 
can define the kth homology group of X to be quotient 

HkX = ZkX/BkX . 

Exercise 23.2. (a) Show that HkX = 0 if X is a point and k> O. (Note 
that this would not be true if degenerate cubes had not been dis­
carded.) (b) Verify that for k = 0 and k = I, these are the groups we 
studied in Chapter 6. (c) Show how any continuous mappingf: X ~ Y 
determines homomorphisms h: HkX ~ HkY, and show that these are 
functorial in the sense of Exercise 6.20. (d) Construct homomor­
phisms from '7TlX,x) to HkX that are compatible with the maps of 
(c) and Exercise 22.14. 

Proposition 23.3. If f and g are homotopic maps from X to Y, then 
hand g* determine the same homomorphisms from HkX to HkY. 

Proof. Suppose H: X x [0, I]~ Y is a homotopy from f to g, and 
f: Ik ~ X is a k-cube; define a (k + I)-cube R(f) by the formula 

R(f)(s, t l , ••• ,tk) = H(f(tt. ... ,tk) x s) . 

If Lnaf a is a k-cycle, a little calculation shows that the boundary of 
LnaR(f a) is Lna(fo fa) - Lna(g 0 fa), which completes the proof. A 
more elegant way to see this is to extend R by linearity to a map 
R: CkX ~ CH IX, R(Lnaf J = LnaR(f a). Then a formal calculation shows 
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that 

g*-!* = aoR+Roa 

as homomorphisms from CkX to CkX. Then if z is a k-cycle, 

g*(z) - !*(z) = a 0 R(z) + R 0 a(z) = a(R(z)) , 

which shows that g*(z) and !*(z) differ by a boundary. o 
It follows from the proposition that if Y C X is a deformation re­

tract, then HkY --7 HkX is an isomorphism for all k. For example, if X 
is contractible, then HkX = 0 for all k> o. 

23b. Mayer-Vietoris for Homology 

To calculate the higher homology groups of more interesting spaces, 
we want to extend the Mayer-Vietoris sequence to these higher groups: 
if U and V are open subsets of a space, there is an exact sequence 

... --4 HiunV) ~ HkU $ HoV ~ Hk(UUV) 

--4 Hk_l(un V) ~ Hk_1U$ Ht_1V ~ Hk_I(UUV) ~ ... 
The idea is very much as in Chapter 10. The key is the definition of 
the "boundary maps" a: H k( U U V) --7 H k - 1 (U n V). For this, we show 
that any class in Hk( U U V) can be represented by a k-cycle z that is 
a sum of a chain cIon U and a chain C2 on V. Then aCI = -aC2 is a 
cycle on un V, and this represents the image class in Hk-I(U n V). 

To carry out the construction of the boundary map, we need a sys­
tematic way to subdivide k-cubes and chains into sums of smaller 
chains, generalizing the constructions we used in Chapter 10. Given 
a k-cube f: /k--7 X, we define S(n to be the sum of the 2k k-cubes 
obtained by restricting f to each of the 2k subcubes obtained by sub­
dividing the cube: 
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Each of these restrictions must be renormalized, to be defined on the 
cube Ik with sides of length 1. In symbols, 

S(f) = ~f 810 ••• ,Ek' 

the sum over all 2k choices of Ei = 0 or 1, and f EI , ... ,Ek is the k-cube 
defined by the formula 

f 81o •. . ,Ek(tl , ••• ,tk) = fef2(tl + El), ... ,1/2(tk + Ek»' 

This is extended by linearity to give a homomorphism S: CkX ~ CkX, 
i.e., by defining S(~nafa) = ~naS(fa). If the boundary of S(f) is cal­
culated, all the terms corresponding to inner faces cancel, and one 
gets the result of subdividing the boundary of f. In symbols, 

(23.4) aes = sea, 
as homomorphisms from C kX to C k-IX, 

Exercise 23.5. Verify this formula. 

We can iterate this subdivision operation, defining for any k-chain 
c new k-chains S(c), S2(C) = S(S(c» , S3(C) = S(S(S(c))), and so on. 

Lemma 23.6. If X is a union of two open sets U and V, and c is a 
k-chain on X, then, for sufficiently large p, SP(c) can be written as a 
sum Cl + C2 where Cl is a k-chain on U and C2 is a k-chain on V. 

Proof. This is an immediate consequence of the Lebesgue lemma, 
since, if f: Ik~ X is a k-cube, the image of each k-cube appear­
ing in SP(f) is the image of a subcube of Ik with sides of length 
1/~. D 

To use this construction and lemma, we want to know that, if z is 
a k-cycle, then S(z) is a k-cycle defining the same homology class as 
z. For this we proceed as follows. Let a: [0, l]~ [0,1] be defined 
by the formula 

{ 2t, 0 ~ t ~ 1/2, 
aCt) = 1 

1, /2~t~l. 

If f is a k-cube in X, define a k-cube A(f) by the formula 

A(f)(tl , ... ,tk) = f(a(tl), ... ,a(tk»' 

Note that the "first comer" A(f>o,. .. ,0 of this k-cube is f, and all the 
other A(f)EIo' .. ,Ek are degenerate. Extend this by linearity as usual to 
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a homomorphism A: CkX ~ CkX. (If k = 0, define A to be the identity 
map.) By the observation just made, we have 

(23.7) SoA = I, 

where I: CkX ~ CkX is the identity map. Now define, for a k-cube f, 
a (k + 1 )-cube H(f) by the formula 

H(f)(s, t" ... , tk) = [«(1 - s)a(t,) + st" ... , (1 - s)a(tk) + stk), 

and extend by linearity to a homomorphism H: CkX ~ Ck+,X. (If k = 0, 
set H = 0.) Note that a?(H(f» = A(f) and a:(H(f» = f. From this one 
sees that 

(23.8) aoH+Hoa = I-A, 

as homomorphisms from C kX to C kX. 

Exercise 23.9. Verify this formula. 

For each p "2. 1, define a homomorphism Rp: C kX ~ Ck+ ,X by the 
formula 

Rp=SoHo(/+S+S2 + ... +SP-'). 

Then we have, for all p "2. 1, the identity 

(23.10) aoRp+Rpoa = SP-I. 

In fact, this is a formal calculation, following from (23.4), (23.7), 
and (23.8), as follows. Whenp= 1, R, =SoH, and 

aoSoH + SoHoa 
SoaoH+SoHoa 
So(aoH + Hoa) = So(/- A) 
S-SoA=S-I. 

For p> 1, Rp=R,oSp, where Sp=I+S+ ... +SP-'. We use the 
case p = 1 in the form a 0 R, = S - I - R, 0 a, and we use the fact that 
a commutes with Sp by (23.4), together with the identity 
9' -I = (S - I) 0 Sp. Calculating, we have 

as asserted. 

aoR, oSp + Rpoa 
(S -1- R, oa)oSp + Rpoa 
(S - /)oSp + (-Rl oa)oSp + Rpoa 
SP-I- R, ospoa + Rpoa 
SP -1- Rpoi) + Rpoa =SP -I, 
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Now suppose that X = U U V. The definition of the boundary ho­
momorphism from HiU U V) to Hk-I(U n V) depends on the follow­
ing lemma: 

Lemma 23.11. (a) Any homology class in H,;K can be represented 
by a cycle z on X of the form z = CI + C2, where CI is a k-chain on U 
and C2 is a k-chain on V. (b) The (k - I)-chain aCI = -aC2 is a cycle 
on un V, and its homology class in Hk-I(U n V) is independent of 
choice of CI and C2' 

Proof. For (a), take any cycle c that represents the homology class. 
By Lemma 23.6, for some p ~ 1, the chain S Pc can be written as the 
sum of a chain cion U and a chain C2 on V. By (23.10), 

SPc - c = a(Rp(c» + Ria(c» = a(Rp(c» , 

from which it follows that z = SPc is a cycle representing the same 
homology class as c. 

For (b), suppose z' = CI' + C2' is another representative of the same 
form for the same homology class. There is a (k + I)-chain w on X 
with a(w) = z' - z. By Lemma 23.6, there is a p ~ 1 such that Spew) 
can be written as a sum of a chain on U and a chain on V. Applying 
(23.10) to the chain a(w), we have 

z' - z = a(w) = SP(a(w» - Ria(a(w))) - a(Rp(z' - z» 
= a(SP(w» - a(Rp(z' - z» = a(SP(w) - Rp(z' - z». 

From the formula for Rp it follows that Rp takes a chain on U to a 
chain on U and a chain on V to a chain on V. We know that z' - z 
is a sum of a chain on U and a chain on V, and it follows that Rp(z' - z) 
is also. It follows that there are (k + I)-chains YI and Y2 on U and V 
such that Spew) - Rp(z' - z) = YI + Y2, so 

Z' - Z = a(YI + Y2) . 

This means that we have an equality of k-chains 

CI' - CI - a(YI) = -(C2' - C2 - a(Y2» ' 

the left side of which is a chain on U and the right side is a chain on 
V. This chain, denoted x, is a chain on un V, and it follows that 

a(x) = a(cl') - a(CI) , 

so the cycles a(cl') and a(cl) differ by a boundary on un V, as 
asserted. D 

Define a: HkX~Hk-I(Un V) by taking the homology class [z] of 
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a cycle z of the form CI + C2 with CI and C2 chains on V and V, to the 
homology class [a(cI)] of the cycle a(cI) = -a(C2) on V n V. It fol­
lows from Lemma 23.11 that this definition makes sense. The proof 
that it is a homomorphism, and that the resulting Mayer-Vietoris se­
quence is exact, is precisely the same as in Chapter 10, so will not 
be repeated; the general algebra for this will be described in §24a. 

In fact, the above argument shows something more. Let X be any 
space, and au = {Va: a E.sil} any open covering of X. Let Ck(X)i1U be 
the subgroup of Ck(X) consisting of linear combinations of nonde­
generate k-cubes f: /k ~ X such that the image of f is contained in 
one (or more) of the open sets Va. These cubes are said to be small 
with respect to au. The boundary operator maps Ck(X)i1U to Ck_I(X)i1U, 
so we can define the corresponding homology groups Hk(X)i1U. There 
is a natural map from Hk(X)i1U to Hk(X). The following proposition 
says that we can always calculate homology by using chains that are 
small with respect to any convenient covering. 

Proposition 23.12. The natural map Hk(X)i1U~ Hk(X) is an isomor­
phism. 

Exercise 23.13. Use (23.4), (23.7). (23.8), and (23.10) to prove this 
proposition. 

This proposition also gives a more concise way to construct the 
Mayer-Vietoris exact sequence: 

Exercise 23.14. For au = {V, V}, construct a homomorphism from 
Hk(X)i1U to Hk-I(V n V), and show that there is a long exact sequence 

.. . ~Hk(Vn V)~HkV(f)HN~HiX)i1U~Hk_I(Vn V)~ . ... 

Combine with the proposition to get the full Mayer-Vietoris se­
quence. 

The following is a useful general consequence of the Mayer-Vietoris 
sequence. 

Exercise 23.15. Suppose a space X is a union of some open sets 
VI, ... , Vp such that all homology groups Hk(y) vanish for any 
intersection Y = ViI n ... n Vi, of these open sets and all k> o. (a) 
Show that HiX) = 0 for k ~ p. (b) If, in addition, each intersection 
Y is connected, and p ~ 2, show that Hp-I(X) = O. (c) Finally, if each 
intersection Y is connected and nonempty, show that Hk(X) = 0 for all 
k>O. 
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23c. Spheres and Degree 

We saw that Sn is simply connected if n ~ 2, so HIS n = 0. With Mayer­
Vietoris, one can calculate the homology groups of all spheres Sn. 
One can cover Sn by two open sets U and Veach homeomorphic to 
open disks in IRn, whose intersection is homeomorphic to Sn-I X f' for 
an open interval f'. Mayer-Vietoris gives an isomorphism 

i): Hk(Sn) -=+ Hk-\(sn-I xf') =:; H k-\(sn-I) 

for all k > 1. From this one sees that 

H (Sn) =:; {7L if k = ? or n, 
k ° otherwise. 

Exercise 23.16. Show that the complements of the south and north 
poles (0, ... ,0, -1) and (0, ... ,0,1) satisfy the conditions for U 
and V, and use Mayer-Vietoris to complete the proof of this calcu­
lation. 

Equipped with homology groups, the definition of the degree of a 
continuous map I: Sn ~ Sn is easy: Since HnSn =:; 71.., the induced map 
1*: HnSn~ HnSn is multiplication by an integer, and this integer is 
defined to be the degree of I, denoted deg(f). Equivalently, if [z] is 
a generator for Hnsn, deg(f) is the integer such that/*([z]) = deg(f)· [z]. 
(Note that using the other generator -[z] leads to the same degree.) 

Exercise 23.17. (a) Show that homotopic maps from sn to sn have 
the same degree. (b) Show that if f: Sn ~ Sn extends to a continuous 
map from Dn+ 1 to S", then deg(f) = 0. (c) Show that if f and g are 
maps from sn to sn, then deg(gof) = deg(g)· deg(f). (d) Show that 
for any integer d and any n ~ 1 there are maps f: Sn ~ sn of degree d. 

In fact the converses of (a) and (b) of the preceding exercise are 
true, but more difficult. 

Having the notion of degree, we can define the generalization of 
winding number: the engulfing number W(f, P) of a continuous map 
I: sn-I ~ IRn \ {P} around P. This can be defined to be the degree of 
the map that follows f by projection onto a sphere around P, i.e., 
define W(f, P) to be the degree of the map 

I(x) -P 
x t-+ . 11/(x) - pil 
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Problem 23.18. (a) Show that, as a function of P, this number is 
constant on connected components of IW \f(sn-I). (b) State and prove 
an n-dimensional analogue of the dog-on-a-leash theorem. (c) Show 
that for f Sn~ IRn \ {OJ differentiable, this definition agrees with that 
in Problem 22.23. 

Similarly, one can define the local degree of a continuous mapping 
f U ~ V between open sets in IRn at a point P in U, provided there 
is a neighborhood Up of P such that no other point of Up has the same 
image as P. This is the degree of the mapping 

f(P + rx) - f(P) 
x ~ ~----'----=---'----

Ilf(P + rx) - f(P)11 ' 
sn-I ~ sn-I, 

for any positive r so that Up contains the ball of radius r around P. 
This can be used for example to define the notion of a homeomor­
phism from IRn to IRn (or Sn to Sn, or X to X for any oriented manifold) 
being orientation preserving or orientation reversing, according as 
the local degree at any point is + 1 or -1. 

Exercise 23.19. (a) Show that this local degree is a continuous func­
tion of the point, so the notion of orientation preserving or reversing 
is well defined. (b) Show that a homeomorphism of sn is orientation 
preserving or reversing according as its degree is + 1 or -1. Show 
that a homeomorphism of IRn extends to a homeomorphism of 
Sn = IRn U {oo}, whose degree therefore determines whether the origi­
nal map is orientation preserving. (c) For a diffeomorphism, show 
that the local degree is given by the sign of the determinant of the 
Jacobian. 

With the concept of degree, the following assertions of Borsuk and 
Brouwer are proved just as before, and the proofs are left as exercises. 

Theorem 23.20. (1) There is no retraction from Dn+ I onto Sn. 
(2) Any continuous mapping from a closed disk Dn to itself must 

have a fIXed point. 

Exercise 23.21. Generalize the results of Exercises 4.9-4.17. 

Problem 23.22. Show that the degree of the antipodal map from sn 
to Sn is 1 if n is odd and -1 if n is even. In particular, the antipodal 
map is not homotopic to the identity if n is even. 
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Problem 23.23. (a) Show that no even-dimensional sphere can have 
a nowhere vanishing vector field. (b) Construct on every odd-dimen­
sional sphere a nowhere vanishing vector field. 

To extend the results about antipodal mappings, we need the fol­
lowing generalization of Borsuk's Lemma 4.20. As there, we denote 
by p* = -P the antipode of a point Pin Sn. 

Theorem 23.24. Letf: sn~sn be a continuous map. 

(a) If f(P*) = f(P)* for all Pin Sn, then the degree off is odd. 
(b) If f(P*) = f(P) for all P in Sn, then the degree off is even. 

The proof of this requires some new ideas, and is postponed to 
Appendix E. Assuming this theorem, we can draw the expected con­
sequences: 

Corollary 23.25. (a) Ifm < n, there is no continuous mappingf: Sn~Sm 
such that f(P*) = f(P)* for all P in Sn. 

(b) Any continuous mapping f: Sn ~ IRn must map some pair of an­
tipodal points to the same point. 

(c) An open set in IRn cannot be homeomorphic to an open set in 
IRm ifn~m. 

(d) It is impossible to cover Sn with n + 1 closed sets, none of which 
contains a pair of antipodal points. 

Exercise 23.26. Prove this corollary. 

Problem 23.27. Let f: Sn ~ Sn be continuous. (a) If f(P*) #- f(P) for 
all P, show that deg(f) is odd. (b) If f(P*) #- f(P) * for all P, show 
that deg(f) is even. (c) Show that the only nontrivial group that can 
act freely on an even-dimensional sphere is the group with two ele­
ments. 

Exercise 23.28. Show that if n > 1 any continuous mapping from Sn 
to IRr must map some pair of antipodal points to the same point. 

Exercise 23.29. Prove that if n + 1 bounded measurable objects are 
given in IRn, then there is a hyperplane that cuts each in half. 

Exercise 23.30. (a) State and prove n-dimensional analogues of Ex­
ercises 4.24-4.31 and 4.34-4.39. (b) Define the index of a vector 
field on an open set in IRn at an isolated singular point, and state and 
prove the n-dimensional analogues of Proposition 7.5 and its corol­
laries. 
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Exercise 23.31. Use Mayer-Vietoris to compute the homology groups 
of a torus Sl x Sl, or of any product Sm x Sn. 

Homology can be used to define a notion of degree in many other 
contexts. Here is an important illustration. A link in ~3 is a disjoint 
union of knots. Equivalence is defined just as for knots. A link can 
be nontrivial even if all the knots occurring in it are trivial. There is 
a linking number that measures how many times two knots intertwine 
with each other. 

o ±I 

Suppose K and L are disjoint knots. Define a mapping 

x-y 

xXy ~ I~_YII' 

±2 

which assigns to the pair (x, y) the direction from x to y. This mapping 
F determines a homomorphism F *: H2(K x L) --') H2(S2). Both of these 
homology groups are isomorphic with 7L. Choosing orientations of 
each identifies them with 7L, and then F * is multiplication by some 
integer, which is defined to be the linking number I(K,L). If a stan­
dard orientation is fixed for S2, the sign of I(K, L) depends on ori­
entations chosen for K and L; it changes sign if either of these ori­
entations are changed. The linking number also changes sign if the 
roles of K and L are reversed. Note that if K and L are far apart, then 
F will not be surjective, so this linking number is zero. 

Exercise 23.32. (a) Show that the linking number of the two circles 
in Exercise 22.7 is ± 1, and therefore the linking number of two fibers 
of the Hopf mapping of Exercise 22.17 is ± 1. (b) Show that the 
intersection of a small sphere S3 around a singUlarity of a plane curve 
that is a node (see §20c) is two circles whose linking number is ± 1. 

It is a fact (see §24c) that the top homology group HnX of an ori­
ented n-manifold X is Z (the orientation determining a choice of gen­
erator). It follows that any continuous map f: X --') Y between oriented 
n-manifolds has a degree. 
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Problem 23.33. (a) Show that if X is a compact oriented surface, 
then HzX =- lL. (b) If X is a compact nonorientable surface, show that 
HzX = O. (c) Iff X ~ Y is a nonconstant analytic map between com­
pact Riemann surfaces, show that the degree defined by homology is 
the same as the number of sheets of the corresponding branched cov­
ering. 

23d. Generalized Jordan Curve Theorem 

There is a vast generalization of the Jordan curve theorem to higher 
dimensions. This can be stated as follows: 

Theorem 23.34. If xeS' is homeomorphic to a sphere Sm, then m ::5 n, 
and m < n unless X = S'. If m < n, the homology groups of the com­
plement are 

{
lL EB lL if m = n - 1 and k = 0, 

Hk(Sn\X) =- lL if m<n-l and k=O or k=n-l-m, 

o otherwise. 

In particular, the complement has two components if m = n - 1, and one 
ifm<n-l. 

The essential point of this theorem is the assertion that the ho­
mology of the complement is the same for all embeddings of Sm in 
Sn. The proof follows the pattern for the Jordan Curve Theorem in 
the plane very closely, using the full Mayer-Vietoris theorem. We 
discuss only the new features, leaving details to the reader. First we 
have the analogous result for embeddings of cubes in Sn. 

Proposition 23.35. If X C Sn is homeomorphic to r, then S" \ X is 
connected and Hk(Sn \ X) = 0 for all k > o. 
Proof. This is by induction on m, the case m = 0 being clear since 
the complement of a point is homeomorphic to [R", so contractible. 
For m > 0 write r as the union of two halves whose intersection is 
homeomorphic to r- I ; this makes X a union of two subspaces A and 
B. Applying Mayer-Vietoris to U = Sn \ A and V = Sn \ B, and know­
ing about U U V by induction, we have 

O=Hk+I(UUV) ~ Hk(UnV) ~ HkUEBHN. 

From this it follows that if z is a k-cycle on Sn \ X that is not a bound-
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ary, then it is not a boundary on Sn \ A or sn \ B. Continuing to cut 
the cubes in half, passing to the limit as in Chapter 5, we find that 
z is not a boundary on Sn \ {x} for x a point, from which the conclusion 
follows easily. 0 

To prove the theorem, also by induction on m, write X as the union 
of two closed sets A and B homeomorphic to the upper and lower 
hemispheres of the sphere Sm. Each of A and B is homeomorphic to 
fR, and AnB is homeomorphic to Sm-I. Applying Mayer-Vietoris 
and the proposition to U = sn \ A and V = Sn \ B, we get 

o ~ Hk+1(S" \A n B) ~ Hk(S" \X) ~ 0 

if k> 0, and 

O~HI(sn\A nB)~Ho(S" \X)~HoUtJJHoV~Ho(S" \A nB)~O. 

We know about Sn \ An B by induction, so the first display computes 
Hk(sn \X) for k> O. If m < n - 1, H1(Sn \A nB) = 0, and the second 
gives 

o ~ Ho(S" \X) ~ ltJJl ~ l ~ 0, 

from which it follows easily that Ho(S" \ X) == l. If m = n - 1, then 
H1(sn \ An B) == l, and from 

° ~ l ~ Ho(S" \X) ~ ltJJl ~ l.. ~ ° 
we find similarly that Ho(Sn \X) == lEBl... If m = n, from 

° ~ Ho(Sn\X) ~ lEBl ~ ltJJl.. ~ ° 
we see that Ho(Sn \ X) = 0, so X = Sn. From this it follows that no 
larger sphere can be embedded in Sn, since an n-dimensional sub­
sphere would already map to the whole Sn. 0 

Exercise 23.36. State and prove analogous results for X C ~" homeo­
morphic to a sphere. 

Exercise 23.37. If F: Dn~ [Rn is continuous and one-to-one, show 
that IRn \ F(sn-I) has two connected components, one the image of the 
interior of Dn , the other the complement of F(D"). Deduce the in­
variance of domain: if U is open in ~n, and F: U ~ IRn is a one-to­
one continuous mapping, then F(U) is open. Prove the invariance of 
dimension: open sets in [Rn and IRm cannot be homeomorphic if n ¥- m. 

It is also true that if F: S"~ IRn+1 is an embedding, then its en-
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gulfing number around points in the two components of the comple­
ments is ± 1 for the bounded component and 0 for the unbounded 
component (see Proposition 5.20), but this requires more machinery. 

Exercise 23.38. Suppose A and B are disjoint closed subsets of Sn, 
n > 1, and two points are given in the complement of A U B. Show 
that if A and B do not separate these points, neither does A U B. 

The Mayer-Vietoris sequence can also be used to show that a com­
pact nonorientable surface cannot be topologically embedded in ~3. 
We sketch a proof in the following problems: 

Problem 23.39. (a) Show that if X e ~3 is homeomorphic to a Moe­
bius band, then Hk(~3 \ X) == 7L if k = 0 or 1, and Hk(~3 \ X) = 0 oth­
erwise. (b) With X as in (a), if Yex corresponds to the boundary 
circle, show that the map 

HI(~3 \ X) ~ HI(~3 \ y) == 7L 

determined by the inclusion of ~3 \ X in ~3 \ Y takes a generator of 
the first group to twice a generator of the second. 

Suppose a subspace X of ~3 were homeomorphic to the projective 
plane. Write X as a union of a space A homeomorphic to a Moebius 
band and B homeomorphic to a disk, with A n B homeomorphic to 
the boundary circle of each. Then with U = ~3 \ A, V = ~3 \ B, Mayer­
Vietoris and Exercise 23.36 give an exact sequence 

Hl(~3 \A)E90 ~ Hl(~3 \A n B) ~ Ho(~3 \X). 

By the preceding problem, the image of a generator of HI(~3 \A n B) 
maps to an element IX in Ho(~3 \ X) that is nonzero, but 2· IX = O. 
However, we know that the Oth homology group of any space is a 
free abelian group, which has no such element. 

Problem 23.40. Show similarly that none of the nonorientable com­
pact surfaces can be embedded in ~3. 

The following problem generalizes two of the main results of Chap­
ters 6 and 9: 

Problem 23.41. Let U be an open subset of ~n. (a) Show that two 
classes in Hn-IU are equal if and only if they map to equal classes 
in H._I(~n \ {P}) for all P not in U. (b) Show that if the complement 
of U in S· = ~. U {co} is a disjoint union of m + 1 compact connected 
sets, then H.-l U is a free abelian group on m generators. 



CHAPTER 24 

Duality 

24a. Two Lemmas from Homological Algebra 

We frequently want to compare different homology and cohomology 
groups, when we have exact Mayer-Vietoris sequences for each, and 
maps between them. Assuming that most of the maps are isomor­
phisms, we want to deduce that the others are as well. There is a 
general algebraic fact that can be used for this: 

Lemma 24.1 (Five-Lemma). Given a commutative diagram 

A--B --C--D __ E 

! 
A'-- B' -- C' -- D' __ E' 

of abelian groups, such that the rows are exact sequences, and all 
the vertical maps but the middle one are isomorphisms, then the mid­
dle map from C to C' must also be an isomorphism. 

The proof is by a "diagram chase," which is much easier and en­
joyable to do for oneself than to follow when someone else does it. 
Here is how to show that the map is one-to-one. If c in C maps to 0 
in C', then its image in D maps to 0 in D' (by commutativity of the 
diagram), so c maps to 0 in D (since D~D' is injective), so c comes 
from some element b in B (by exactness of the top row). The element 
b maps to an element b' in B' that maps to 0 in C' (why?), that 

346 
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therefore comes from an element a' in A'. This element a' comes 
from some element a in A, and this element a must map to b since 
they have the same images in B'. Since a maps to 0 in C, and b maps 
to c, c must be o. 
Exercise 24.2. (a) Prove similarly that C ~ C' is surjective. (b) Show 
that the five-lemma is also valid under the following weaker as­
sumptions, still assuming the rows are exact: (i) each square either 
commutes or commutes up to sign, i.e., the composite going around 
one way is plus or minus the composite going around the other way; 
and (ii) the maps B~B' and D~D' are isomorphisms, A~A' is 
surjective, and E ~ E' is injective. 

If you like this diagram chasing, there is a general process that 
constructs long exact sequences, which can be used to construct all 
the Mayer-Vietoris sequences we have seen. For this, one has a com­
mutative diagram of abelian groups 

where the rows are exact, and the composite of any two successive 
maps in the columns is zero. One says that the columns are chain 
complexes. The diagram is abridged to saying one has a short exact 
sequence of chain complexes 

o ~ C*' ~ C* ~ C*" ~ o. 
For each chain complex (column) one can form homology groups. 
For the center column, 

HiC*) = Zk(C*)/Bk(C*) , 
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where Zk(C*) = Kemel(Ck~ Ck- l ) are the k-cycles, and Bk(C*) = 
Image(Ck+1 ~ Ck) are the k-boundaries. Similarly for the other two 
columns. There are maps from Hk(C*') to Hk(C*) and from Hk(C*) 
to Hk(C*'), determined by the horizontal maps in the diagram. For 
example, the map from C/ maps Zk(C*') to Zk(C*) and BiC*') to 
Bk(C*), so it determines a homomorphism on the quotient group. The 
interesting maps are boundary homomorphisms 

0: HlC*") ~ Hk-I(C/). 

To define these, take a representative i' in ZlC*") of a class in HiC*'). 
Choose an element c in C k that maps onto z". Let c be the image of 
c in Ck-1- Then c maps to 0 in Ck-/', since it has the same image 
there as z" does, and z" is a cycle. So c comes from an element c' in 
Ck- l '. 

Exercise 24.3. Show that this element c' is a (k - I)-cycle, and its 
homology class in Hk-I(C*') is independent of choices of the repre­
sentative z" and the element c that maps onto z". 

The homology class of c' is defined to be the boundary of the ho­
mology class of z": o([z"]) = [c']. One checks easily that 0 is a ho­
momorphism of abelian groups. 

Proposition 24.4. The resulting sequence 

••• --'? Hk+ ICC /') --'? Hk(C *') --'? Hk(C *) --'? Hk(C/,) --'? Hk-I(C/') --'? •• 

is exact. 

The proof is some more diagram chasing, which again we leave as 
an exercise. There is a similar result when the vertical maps in the 
diagram go up rather than down. Usually then the indexing is by up­
per indices, so we have "cochain complexes" 

C*: .. . ~Ck-I~Ck~Ck+I~ . .. 

A short exact sequence o~ C*' ~ C* ~ C*" ~ 0 determines a long 
exact sequence of their cohomology groups 

.. . ~Hk-I(C*")~Hk(C*')~Hk(C*) 
~Hk(C*")--'?Hk+I(C*')~ .. 

Let us see how some of the Mayer-Vietoris sequences we have 
seen earlier fall out of this formalism. For example, if X is a ~"" 
manifold, and CkX denotes the vector space of ~oo k-forms on X, and 
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U and V are open sets in X, there is an exact sequence 

o ~ C*(U u V) ~ C*(U) EEl C*(V) ~ C*(U n V) ~ 0 

of cochain complexes. The first map takes a form w on U U V to the 
pair (wlu,wlv), and the second takes a pair (WI>W2) to the difference 
wdunv - w2lunv. The exactness of this sequence is clear from the def­
initions except for the surjectivity of the second map, and that was 
proved using a partition of unity in Chapter 10. The Mayer-Vietoris 
sequence then results immediately from Proposition 24.4. 

Similarly, for cohomology with compact support, one has a short 
exact sequence of cochain complexes 

o ~ ct(U n V) ~ Ct(U) EEl ct(V) ~ Ct(U U V) ~ 0, 

where the first map takes a form w on un V to the pair (wu, -wv), 
where WU denotes the extension by 0 from un V to U, and similarly 
for V; the second map takes (WI>W2) to Wl uUV +wtuv. Again, ex­
actness follows from a partition of unity argument, and the Mayer­
Vietoris exact sequence results. 

For homology, if a space X is a union of open sets U and V, let 
CtCX)"U denote the k-chains that are small with respect to the covering 
au = {U, V} of X. Then there is an exact sequence 

o ~ c*(Un V) ~ C*(U)EElC*(V) ~ C*(X)'lL ~ 0 

of chain complexes, the first taking a chain on un V to the pair con­
sisting of its images on U and on V, and the second taking a pair to 
the difference of their images on X. The exactness is immediate, giv­
ing an exact sequence 

~ HHl(C*(X)"U) ~ Hiun V) ~ HiU)EElHiV) 

~ HiC*(X)'lL) ~ Hk-I(U n V) ~ 

To complete the proof, one appeals to Proposition 23.12, which says 
that Hk(C*(X)'lL) = HiC*(X» = Hk(X), 

Exercise 24.5. If 0 ~ C' ~ C~ C" ~ 0 is an exact sequence of free 
abelian groups, and G is any abelian group, show that 

o ~ Hom(C", G) ~ Hom(C, G) ~ Hom(C', G) ~ 0 

is also an exact sequence. IfO~C*'~C*~C*"~O is an exact se­
quence of complexes of free abelian groups, this gives an exact se­
quence O~Hom(C*",G)~Hom(C*,G)~Hom(C*',G)~O of co­
chain complexes, and hence an exact sequence of cohomology groups. 
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Exercise 24.6. Let C * and C *' be chain complexes with boundary 
maps denoted ih: Cc~ Ck- 1 and iJ/: Ck' ~ Ck- 1', respectively. Define 
a map of chain complexes f*: C * ~ C *' to be a collection of homo­
morphisms.fk: Ck~C/ that commute with the boundary maps. Show 
that such mapsh determines homomorphisms from HiC*) to Hk(C/). 
Call two maps f* and g* chain homotopic if there is a collection of 
maps, Hk: Ck~Ck+l' such that 

gk-fk = iJk+loHk+Hk-loiJk 

for all k. Show that f* and g* then determine the same maps from 
Hk(C*) to Hk(C*') for all k. 

If C*' ~ C* is a map of chain complexes such that each C/ ~ Ck 
is one-to-one, one can define ct to be Ck/Ck', getting an exact se­
quence O~C*'~C*~C*/C*'~O, so a long exact homology se­
quence. For example, if Y is a subspace of a topological space X, 
then C*Y~C*X is one-to-one, so one can define a quotient chain 
complex C*X/C*Y. The homology groups of this complex are de­
noted Hk(X, y), and are called the relative homology groups. They 
fit in a long exact sequence 

.. . ~Hk+l(X, Y)~Hk(Y)~Hk(X)~Hk(X, Y)~Hk-l(Y)~' .. 

For suitably nice spaces, these relative groups are isomorphic to the 
homology groups of the space obtained by collapsing (identifying) Y 
to a point. In many treatments of algebraic topology, these relative 
groups, and the above sequence, are used for calculation in most sit­
uations where we have used the Mayer-Vietoris sequence. 

24b. Homology and De Rham Cohomology 

In this section we want to prove that the De Rham cohomology groups 
HkX of a manifold are dual to the homology groups HkX, i.e., we 
want to construct an isomorphism 

HkX"':;' Hom(HkX, IR), 

generalizing what we did for surfaces for k = 1. The idea is similar: 
one wants to integrate k-forms over k-cubes. This makes sense for 
differentiable k-cubes, but there is a problem of how to define this 
for continuous k-cubes that are not differentiable-a problem that we 
avoided for k = 1 by cutting up the path, locally writing the k-form 
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as the differential of a (k - I)-form J.L, and evaluating J.L over the end­
points of the subdivided path. For k> 1, unless the restriction of the 
k-cube to its boundary is differentiable, this will not work. A more 
systematic procedure, that does work, is to show that the homology 
HkX can be computed by using only differentiable cubes. 

A cube f: /k ~ X is a «6" cube if it extends to a «6" mapping on 
some neighborhood of the cube /k C lit. Define C;X to be the free 
abelian group on the nondegenerate «6" k-cubes. The boundary a from 
the k-chains to the (k - i)-chains takes «600 cubes to «6" cubes, so we 
can define the «6" homology groups H;X to be the quotient of the 
closed «6" k-chains modulo the subgroup consisting of boundaries of 
«6" (k + i)-chains. There is an obvious map 

which, in the language of the preceding section, is given by the map 
of chain complexes C;X ~ C*X. We will show that this is an iso­
morphism. 

If w is a k-form on X, and f: /k~ X is a «6" cube, we can define 
the integral of w over f by 

Ir w = Ll*(W), 
where f*(w) is the pull-back form; a form on the cube can be written 

f(x i> • • . , Xk) dx 1 /\ dx2 /\. • . /\ dxb 

and the integral of such a form is the usual Riemann integral of the 
continuous function f on the cube. 

Exercise 24.7. Prove "Stokes' theorem" in this context: if w is a 
(k - i)-form, then 

r dw = r w. 
Jr Jar 

From Stokes' theorem, it follows as in the case k = 1 that there is 
a map 

dx ~ Hom(H;X, IR), 

We will see that this is also an isomorphism. Combining these two 
isomorphisms will give the duality we were after. 
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To prove these isomorphisms, we need to know that the groups 
H; X have many of the same properties as the purely topological groups 
HkX, For example, 

Exercise 24.8. (a) Show that a C(5'" mapping f: X ~ Y of manifolds 
determines functorial homomorphismsh: H;X~H;Y. (b) If two maps 
from X to Yare homotopic by a C(5'" mapping F: X X l' ~ Y (where I' 
is an open interval containing [0, 1]), then they determine the same 
homomorphisms. (c) Deduce that H;U = 0 for k> 0, and H~U = 7L 
if U is a starshaped open set in ~n. 

Similarly, one has Mayer-Vietoris exact sequences just as for the 
groups HkX, and compatible with the maps from groups H; to the 
Hk • In fact, the same construction works in the C(5" case, noting that 
the subdivision operators used to cut cubes into small pieces preserve 
C(5'" chains. One modification needs to be made in our proof, however, 
since the operator A we used in Chapter 23 used a function that is 
only piecewise differentiable. 

Exercise 24.9. Change the function a used in §23b to a C(5'" function 
from [0, 1] to [0, 1] such that a(O) = 0 and a(t) = 1 if t;::::: 1/2. With 
any such a, show that, for any chain r, SoA(f) - r is a boundary. 
Use this to complete the proof of Mayer-Vietoris for these groups. 

To prove these isomorphisms, we need a way to build up arbitrary 
manifolds out of simple pieces. The following general lemma will 
suffice for our purposes. Let us call an open rectangle in ~n an open 
rectangular solid with sides parallel to the axes, i.e., an open set of 
the form (ai, bl ) x ... X (an, bn). 

Lemma 24.10. If X is an open set in ~n, then X can be written as 
the union of two open sets U and V such that each of U and V and 
U n V is a disjoint union of open sets, each of which is a finite union 
of open rectangles. 

Proof. Take compact sets KI C K2 C ... as in the Lemma A.20. 
Construct a sequence of open sets Up as follows. Let UI be a finite 
union of rectangles covering KI , with the closure of each contained 
in the interior of K2 • Let U2 be a finite union of rectangles covering 
K2 \ Int(KI), with the closure of each contained in the interior of K3 • 

Inductively, let Up be a finite union of rectangles that covers the com­
pact set Kp \ Int(Kp _ d, the closure of each contained in the interior of 
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Kp+l and in the complement of K p- 2 , and not meeting Up- 2 • Now let 
U be the union of the union of all Up with p even, and let V be the 
union of the union of all Up with p odd. D 

Lemma 24.11. If X is a differentiable n-manifold, then X can be 
written as the union of two open sets U and V such that each of U 
and V and U n V is a disjoint union of open sets, each of which is a 
finite union of open sets diffeomorphic to open sets in IR". 

Proof. The argument is the same. Remark A.21 shows that X is a 
union of compact sets Kl C K2 C ... with the same properties. Then 
the preceding proof, with "rectangle" replaced by "open set diffeo­
morphic to an open set in IRn" goes over without change. D 

Theorem 24.12. For any manifold X the natural maps lI';X ~ HkX 
are isomorphisms. 

Proof. Let us write "T(X)" for the statement that the maps from 
lI';X to HkX are isomorphisms for all k. There are three tools: 

(1) T(U) is true when U is an open rectangle in IRn. 
(2) If U and V are open in a manifold, and if T(U), T(V), and T(U n V) 

are true, then T(U U V) is true. 
(3) If X is a disjoint union of open manifolds Xa, and each T(Xa) is 

true, then T(X) is true. 

With what we have seen, each of these is easy to prove. (1) follows 
from the fact that H;U and HkU vanish for k>O, and both are nat­
urally isomorphic to Z when k = 0, cf. Exercise 24.8. (2) follows 
from the fact that we have Mayer-Vietoris exact sequences for each, 
with compatible maps between them: 

H;unV-H;UeH;V- H;UUV-H':.-lunV-H;_IUeH;Y 

~ ~ ~ ~ ~ 
Hk U n V - Hk U e Hk V - Hk Uu V - Hk_1 un V - Hk_1U e Hk_1 V 

so the five-lemma shows that the middle map is an isomorphism if 
the others are. (3) follows from the fact that to specify a class of either 
kind on X is equivalent to specifying a class on each Xa , with all but 
a finite number of these classes being zero (i.e., HkX is the direct 
sum of the groups HkXa , and similarly for H;). 

We can now use these tools to prove the theorem. We first show 
that T(X) is true whenever X C IR" is a finite union of open rectangles. 
This is by induction on the number of rectangles. (1) takes care of 
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one rectangle, and if X is a union of p rectangles, let U be the union 
of p - 1 of them and let V be the other. Then T(U) and T(V) are true 
by induction, and T(U n V) is true since un V is also a union of at 
most p - 1 rectangles, since the intersection of two rectangles is either 
empty or a rectangle. Then T(X) is true by (2). 

Next we show that T(X) is true whenever X is an open set in ~n. 
By Lemma 24.10 one can write X as a union of two open sets U and 
V, such that each of U and V and un V is a disjoint union of open 
sets, each of which is a finite union of open rectangles. Applying the 
preceding step and (3) we know that T(U) and T(V) and T(U n V) 
are true, and by (2) again we know that T(X) is true. 

Note that since a diffeomorphism between manifolds determines an 
isomorphism between the corresponding groups, it follows that T(X) 
is true for any set diffeomorphic to an open set in ~n. The same in­
ductive argument as for rectangles shows that T(X) is true when X is 
a finite union of open sets, each diffeomorphic to an open set in ~n. 
For the general case, Lemma 24.11 shows that any manifold X is a 
union of two open sets U and V such that each of U and V and U n V 
is a disjoint union of open sets, each of which is diffeomorphic to a 
finite union of open sets in ~n. By the last step and (3) again, T(U) 
and T(V) and T(U n V) are true, and a final application of (2) shows 
that T(X) is true. 0 

Theorem 24.13. For any manifold X the natural maps from H"x to 
Hom(H;X, ~) are isomorphisms. 

Proof. The proof follows exactly the same format, with T(X) being 
the statement that these maps are isomorphisms for all k. Once (1)­
(3) are proved, in fact, the proof is identical. The proof of (1) is the 
same, and (3) follows from the fact that to specify a class of either 
kind is equivalent to specifying a class on each Xa (i.e., HkX is the 
direct product of the groups HkXa , and similarly for Hom(H;X, ~». 
To prove (2), we need to compare the cohomology Mayer-Vietoris 
sequence with the dual of the Mayer-Vietoris sequence in homology. 
For brevity write H';X* in place of Hom(H;X, ~). We have a diagram 

An application of the five-lemma, together with the following ex-
ercise, finishes the proof. 0 
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Exercise 24.14. Show that this diagram commutes. 

These theorems justify the use of «6"" techniques in studying the 
topology of a differentiable manifold. For example, they show that 
the De Rham groups depend only on the underlying topology of the 
manifold. Combining the isomorphisms of the two theorems, one has 
justified writing Iz w for z a continuous k-cycle and w a closed «6"" k­
form on a manifold. 

Problem 24.15. Show that for U open in ~n. two classes 'Tl and 'T2 

in Hn- 1 U are equal if and only if IT, w = IT2 w for all closed (n - 1)­
forms won U. 

Exercise 24.16. Let X be an n-manifold that can be covered by a 
finite number of open sets such that any intersection of them is dif­
feomorphic to a convex open set in ~n. (It is a fact, proved by using 
a Riemannian metric and geodesics, that any compact manifold has 
such an open cover.) Show that each HkX is a finitely generated abe­
lian group, and that each HkX and H~X is a finite-dimensional vector 
space. 

24c. Cohomology and Cohomology 
with Compact Supports 

In higher dimensions, except in simple cases in the Poincare lemmas, 
we have not yet used the higher-dimensional versions of wedging forms 
that we used on surfaces in Chapter 18. In general the wedge w t'l.L 
of a k-form w and an I-form I.L is a (k + I)-form. This operation is 
linear in each factor, and satisfies the identities: 

(i) I.LAw=(-lt ' WAI.L; and 
(ii) d(wA I.L) = dWAI.L + (-ltWAdl.L. 

Again, we assume these properties from advanced calculus. If either 
w or I.L has compact support, then w A I.L has compact support, since 
the support of the wedge product is contained in the intersection of 
the supports of the factors. It follows from (ii) that the wedge product 
of two closed forms is closed, and that, if one is closed and the other 
is exact, the wedge product is exact. From this it follows that the 
wedge product determine products on the cohomology groups 

A : dx X H'X ~ Hk+'X 
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and 

each by the formula [w] x [fJ.]i-7 [w]A [fJ.] = [wAfJ.]' 

Exercise 24.17. Verify that these are well-defined bilinear mappings. 
Show that the first satisfies the formula [fJ.] A [w] = ( - Itt [w] A [fJ.]. 
Prove that these products are associative where defined. 

Now suppose X is oriented. As we saw in §22e, integrating over 
the manifold gives a mapping H~X ~ II\t So we have homomorphisms 

HkX x H~-kX ~ H~X ~ IR. 

This determines linear maps qjJx: HkX ~ Hom(H~-k X, IR). Explicitly, 
qjJx takes the class of a closed k-form w to the homomorphism that 
takes the class of a closed (n - k)-form fJ. with compact support to 
the integral Ix w A fJ.. 

Theorem 24.18. For any oriented manifold X the duality maps 

qjJx: HkX ~ Hom(H~-kX, IR) 

are isomorphisms. 

Proof. The proof is almost identical to that for Theorems 24.12 and 
24.13. This time, for (1), note that HOU = ~ and H~U =- ~ for U an 
open rectangle, and all other groups vanish, by the Poincare lemmas; 
and since 1 E ~U maps to the nonzero homomorphism that is inte­
gration over U, the map is an isomorphism. For (2), one again has 
maps from the Mayer-Vietoris sequence for Hk to the dual of the 
sequence for the H~-k. This time the signs involved in the definition 
mean that the key square in the diagram only commutes up to sign, 
but that is good enough to apply the five-lemma, cf. Exercise 24.2. 
We leave the calculation of these signs as an exercise. 0 

This duality theorem has several corollaries that were not obvious 
before. For example, the simple fact that H~X = 0 whenever X is a 
connected but not compact manifold implies the 

Corollary 24.19. If X is a connected, oriented, but noncompact n­
manifold, then HnX = o. 

Corollary 24.20. If X is a connected oriented n-manifold, then the 
map H~~IR, wi-7fxw, is an isomorphism. 
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Proof. Since HOX = IR, it follows from the theorem that H~X is one 
dimensional, and we have seen that the map H~ ~ IR is not zero. 

D 

Problem 24.21. Let X be a nonorientable connected n-manifold, and 
let p: X ~ X be the orientation covering of § 16a. (a) Construct maps 
p*: H~X ~ H~X and p*: H~X ~ H~X so that p* 0 p* .... = 2 ..... and 
p* °P*w = W + T*W, where T: X ~ X is the nontrivial deck transfor­
mation. (b) Deduce that p* embeds H~X as the subspace of H~X 
consisting of classes of the form W + T*W. (c) Show that H~X = O. In 
particular, if X is compact, then HnX = O. 

Corollary 24.22 (Poincare Duality). If X is a compact oriented n­
manifold, then the pairing HkX X Hn-kX ~ IR is a perfect pairing, i.e., 
for any linear map lp: F-kX ~ IR, there is a unique w in HkX such 
that lp(JL) = Ixw/\JLjor all JL in Hn-kX. 

Problem 24.23. (a) Use this corollary to prove that dx is finite di­
mensional. (b) If n = 2m, with m odd, show that the dimension of 
HmX is even, and deduce that the Euler characteristic 

n 

L (-ltdim(HkX) 
k=O 

must be even. 

This puts strong restrictions on the homology and cohomology groups 
of a compact oriented n-manifold. For example, the dimension of HkX 
must equal the dimension of Hn-kX. The skew-commutative algebra 
structure on the direct sum of the cohomology groups is also useful 
in many applications. 

As we saw for Riemann surfaces these duality theorems can be used 
to define an intersection number (0:,13) for homology classes 0: in HpX 
and 13 in H n-pX, when X is an oriented n-manifold. As in that case, 
it is possible to do this directly and geometrically, by finding repre­
sentative cycles that meet transversally, and counting the points of 
intersection with an appropriate sign. This takes quite a bit of work, 
however, and one can use duality to define the intersection number 
quickly: A class 0: in HpX determines a linear map from HPX to IR 
by .... ~ I a .... , and by Poincare duality there is a unique class w" in 
Hn-pX so that Ia .... = Ixw,,/\ .... for all .... in HPX. By the same construction, 
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~ in Hn-pX determines wj3 in HPX. So we can define 

(a,~) = !xwa I\Wj3. 

This is a bilinear pairing, satisfying (~, a) = (-IY"(n-p)(a, ~). The fact 
that (a, ~) is always an integer, however, is not so obvious from this 
definition, although it can often be verified directly by making con­
structions for representatives of Wa and wj3, as we did for surfaces in 
Chapter 18. 

Exercise 24.24. Suppose X is oriented but not necessarily compact, 
and X has an open cover as in Exercise 24.16. Construct a homo­
morphism 

characterized by the equality fa J..L = f X Wa 1\ J..L for all J..L in HPX. 

Exercise 24.25. Suppose a topological space is a union of an increas­
ing family of open subsets Ui, U I C U2 C .... Show that any ele­
ment of HtX is the image of an element of some HtUi , and that ai 

in HtUi and aj in HkUj determine the same element of HkX if and 
only if there is some m ~ max(i,j) such that ai and aj have the same 
image in HkUm • This is expressed by saying that HkX is the direct 
limit of the HkU;, and written 

HkX = lim HkU; . 
~ 

Exercise 24.26. Suppose a manifold X is an increasing union of open 
subsets Ui, U I C U2 C .... (a) Use duality to deduce that giving a 
class 'T] in HkX is equivalent to giving a collection of classes 'T]i in 
HkUi for all i such that 'T]i restricts to "li if i > j. This says that HkX 
is the inverse limit of the HkUi , and is written 

HkX= ~HkUi' 

(Note that this is not obvious from the definition of De Rham groups, 
even for open sets in ~n.) (b) Show that H~X is the direct limit of 
the H~Ui: 

In fact, one can construct cohomology groups H\X; lL) for any space 
X, which are finitely generated abelian groups for manifolds as in 
Exercise 24.16, and one can find an analogue of the wedge product 
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for these groups; after proving appropriate duality theorems, one has 
a construction of the intersection pairing whose values are integers. 
This could be a next chapter, if this book didn't end here. At least 
now we can give a quick definition of these groups, or of cohomology 
groups Hk(X; G) with coefficients in any abelian group G, general­
izing directly the discussion in §16c. Define a k-cochain to be an 
arbitrary function that assigns to every nondegenerate k-cube in X an 
element of G; these form a group Ck(X; G). If c is a k-cochain, define 
the coboundary 8(c) of c to be the (k + l)-cochain defined by the 
formula 8(c)(f) = c(af), where a cochain is extended linearly to be 
defined on all chains. Then 8 0 8 = 0, so one can define 
Hk(X; G) = Zk(X; G)/Bk(X; G), where Zk(X; G) is the group of k-co­
cycles (whose boundary is zero), and Bk(X; G) is the group of k-co­
boundaries (of (k - l)-cochains). 

Exercise 24.27. Prove that these groups satisfy the same properties 
as homology groups, but "dual." For example, maps f: X ~ Y deter­
mine (functorial) homomorphisms f*: Hky ~ HkX, homotopic maps 
determine the same maps on cohomology groups. State and prove the 
Mayer-Vietoris theorem for these groups. Construct homomorphisms 
from Hk(X; G) to Hom(H kX, G), and show that these are isomor­
phisms if G = lIt 

Project 24.28. If G is an abelian group, and UU is an open covering 
of a space X, define and study Cech groups Hk(UU; G) generalizing 
the groups H'(UU; G) studied in Chapter 15. 

24d. Simplicial Complexes 

We have seen the usefulness of triangulating a surface. Many spaces 
that arise in nature, including many which are not manifolds, admit 
triangulations. When a space is triangulated, there is a much smaller 
chain complex that can be used to compute its homology. The general 
methods of §24a can be used to show that this complex computes the 
same homology as that using cubical chains. 

A (finite) abstract simplicial complex is a finite set V, called the 
vertices, and a collection K of subsets of V, called the (abstract) sim­
plices, with the property that every subset of a simplex is a simplex. 
One usually assumes also that every set {v} for v in V is a simpllx, 
and one says that K is the simplicial complex. An n-simplex is a set 
a in K with n + 1 elements. A subset T of a simplex a is called a 
face of a. 
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A set of n + 1 points Po, . . ,P n in a vector space is called af-
finely independent ifthere is no relation toPo + tlP I + ... + tnPn = 0 
with to, ... , tn real numbers satisfying to + t I + ... + tn = 0 with 
not all ti = O. Equivalently, the vectors PI - Po, P2 - Po, ... , Pn - Po 
are linearly independent. In this case the set of points 

{toPo + tlP I + ... + tnPn: li2:0, 10 + II + ... + tn = I} 

is called the (geometric) simplex spanned by the points. It is homeo­
morphic to an n-dimensional disk. 

The realization IKI of an abstract simplicial complex K can be con­
structed by taking the vertices V to be the basis vectors for a vector 
space, and defining IKI to be the union of the geometric simplices 
spanned by the abstract simplices in K. In practice one often takes 
the vertices in a smaller vector space, provided those in any simplex 
are affinely independent, and two geometric simplices are either dis­
joint or meet only along common faces. 

We want to write down a chain complex for the simplicial complex 
K. This is simplest if K is ordered. This means that a partial ordering 
is given for the vertices, such that the vertices of each simplex are 
totally ordered. Each simplex a then has a unique representation 
a = (vo, ... ,vn) where the vertices of a are listed in order. The chain 
complex C *K of the ordered simplicial complex K is defined as fol­
lows: CnK is the free abelian group on the n-simplices of K, and the 
boundary iJ: CnK ~ Cn-IK is defined by 

n 

(24.29) iJ«vo,··. ,Vn» = 2:<-1)i(vo,'" ,Vi- \>Vi+ I,··· ,Vn). 

i= O 

Exercise 24.30. Verify that the composite iJ 0 iJ: CnK ~ Cn- 2K is zero. 

The nth homology group Hn(C*K) of this complex is denoted HnK. 

Exercise 24.31. Suppose K has a vertex Vo with the property that for 
every simplex a in K, the subset consisting of a and va is also in K; 
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denote this simplex by (vo, (J). (Geometrically, IKI is a cone with 
vertex vo.) Assume that K is ordered so that Vo comes before all other 
vertices. Define maps H: CnK ~ Cn+IK by the formula 

( ) == {(vo, (J) if Vo is not a vertex of (J, 

H (J 0 'f' f 1 Vo IS a vertex 0 (J. 

Show that a 0 H + H 0 a is the identity map on C n K for n > O. Deduce 
that HnK == 0 for n> 0, and that HoK == 7L. 

A subcomplex L of a simplicial complex K is subset of the simplices 
in K such that whenever a simplex (J is in L, so are all its faces; then 
L is a simplicial complex, with its vertices a subset of the vertices of 
V. An ordering of K determines an ordering of L, and one has a ca­
nonical map C*L~C*K, determining homomorphisms HnL~HnK 
on homology groups. If LI and L2 are subcomplexes of K, the inter­
section LI n L2 and union LI U L2 are also sUbcomplexes. These maps 
determine an exact sequence of chain complexes 

O~C*(LI nL2)~ C*L I ffiC*L2~C*(LI UL2)~0, 

which determines a long exact Mayer-Vietoris sequence 

.. . ~Hn+I(LI UL2)~Hn(LI nL2)~HnLI ffiHnL2 
~Hn(LI UL2)~' .. 

We want to compare the homology of K with the homology of its 
geometric realization IK I. For each ordered simplex (J == (vo, . . . ,v n) 
we need to define a cubical n-chain [., == f(vo, .. . ,v.) in IKI. If n == 0, fO' 
is the constant O-chain at Vo. If n == 1, f 0' is the path from Vo to 
VI: fO'(t) == tvl + (1 - t)vo· In general, define fO': r~ IKI inductively 
by the formula 

f O'(tl, ... ,tn) == tnvn + (1 - tn) f(yo, ... ,y._.>(tl , ... ,tn-I)' 

Writing this out, we have 

n 

(24.32) fO'(tI,"" tn) == 2: tk(1 - tk+I)' .... (1 - tn)v*, 
k=O 

where, when k == 0, to is set equal to 1. 

Proposition 24.33. (a) The map (J'~ fO' determines a homomorphism 
C*K ~C*IKI of chain complexes. (b) The induced homomorphisms 
H$ ~ HnlKI are isomorphisms. 
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Proof. For (a), we must show that afa = L7=o(-IYf(vo ... ,~;, ... ,vn) ,where 

the " denotes an omitted vertex. From the definition of af a as 

L~= I ( -1 y( a?f a - a: fa), this follows from the following three calcu­
lations, which are simple exercises, using (24.32): 

(i) alf a = f(v" ... ,vn); 

I 
(ii) ai fa is a degenerate (n - 1 )-cube if i > 1; and 

(iii) a~f a = f(vo, .... ~;, ... ,vn)· 

The proof of (b) will be by the (by now) familiar induction using 
Mayer-Vietoris, as follows. If LJ and L2 are subcomplexes of K, we 
have a commutative diagram 

o - C*(IL\ II ~I) --=--+- C*ILJI E9 C*I~I ~ C*(ILJ U ~I) - 0 . 

This gives a corresponding commutative diagram of long exact se­
quences, and the five-lemma shows that if (b) is true for LJ and L2 
and LJ n L2, then (b) is also true for LJ U L2 . 

We can now prove (b) by induction on the number of simplices in 
the simplicial complex K. Take any vertex v of K. Let L J be the 
subcomplex consisting of all simplices of K that are contained in a 
simplex of K that contains v, and let L2 be the subcomplex consisting 
of all simplices of K that do not contain v. Then (b) is known for L J 

by Exercise 24.31, and (b) is known for L2 and L\ n L2 by induction 
on the number of vertices. The preceding argument then shows that 
(b) holds for K=LJ UL2 • 0 

Corollary 24.34. If K and L are simplicial complexes whose geo­
metric realizations are homeomorphic, then HnK=HnLfor all n. 

Proof. This follows from the fact that a homeomorphism between 
spaces induces an isomorphism between their homology groups. 0 

In the early days of algebraic topology, the homology of a compact 
space X was defined by triangulating the space, i.e., finding a homeo­
morphism between some IK I and X, and taking the homology H *K. 
With this as the definition the assertion of the preceding corollary­
that homology is a topological invariant of the space-was a serious 
problem. 

The preceding discussion depended on a choice of ordering of the 
simplicial complex, which is how one would usually use the result in 
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calculations. The following exercise shows how this can be circum­
vented: 

Exercise 24.35. For an abstract simplicial complex K, define C,.K to 
be the quotient of the free abelian group on the set of symbols 
(vo, ... ,vn), where Vo, ... , Vn is an (ordered) set of vertices span­
ning an n-simplex of K, modulo the subgroup generated by relations 

(vo, ... ,vn) - sgn(T)(vT(O), ... ,vT(n», 

for all permutations T in the symmetric group n+1 , where sgn(T) = ± 1 
is the sign of the permutation. Then CnK is a free abelian group of 
rank equal to the number of n-simplices, but with basis elements only 
specified up to multiplication by ± 1. (a) Show that formula (24.29) 
determines a boundary map iJ: CnK --+ Cn-IK, with iJ 0 iJ = O. (b) Given 
an ordered n-simplex (vo, ... ,vn), define f(vo ... . ,vn) to be f(bo, .. . ,bn), 

where bk is the barycenter of the simplex spanned by the first k + 1 
vertices, i.e., bk = I/(k + l)(vo + VI + ... + Vk). Define a map from 
C*K to C*IKI by sending (vo, ... , vn) to the sum 
~sgn(T)f(vT(O)' .. "VT(n»' the sum over all T in @Sn+I' Show that this de­
termines a homomorphism of chain complexes, and show that the 
resulting map in homology is an isomorphism. (c) Show that an or­
dering of K determines an isomorphism of the complex defined earlier 
with the complex defined in this exercise. 

Problem 24.36. If C; is the number of i-simplices in K, show that the 
Euler characteristic is the alternating sum of the numbers of simplices: 

~(-lic; = ~(-l); dim(H;(IKI» , 

generalizing what we have seen for surfaces. 

Problem 24.37. (a) If OU = {Un V E V} is a finite collection of open 
sets whose union is a space X, define a simplicial complex, called 
the nerve of OU and denoted N(OU) , by taking V to be the vertices, and 
defining the simplices to be the subsets S such that the intersection 
of the Uv for V in S is nonempty. Verify that N(OU) is a simplicial 
complex. 

(b) If K is any simplicial complex, and v is a vertex in K, define 
an open set St(v) in IKI, called the star of v, to be the union the 
"interiors" of the simplices that contain v, i.e., St(v) is the comple­
ment in IKI of the union of those Icrl for which cr does not contain v. 
Show that the open sets {St(v), V E V} form an open covering of IKI, 
and that the nerve of this covering is the same as K. 
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(c) Suppose UU is an open covering of X as in (a), with the property 
that for all vo, ... , Vr in V, Uvo n ... n UVr is connected and 
HiUvo n ... n Uv,) = 0 for all k> O. Construct a homomorphism of 
chain complexes from C*(N(UU» to C*X, and show that it determines 
an isomorphism from Hk(N(UU» to HkX for all k. 



APPENDICES 

These appendices collect some facts used in the text. The beginnings of 
Appendices A, B, and C state definitions and basic results from point set 
topology, calculus, and algebra that should be reasonably familiar, together 
with proofs of a few basic results that may be slightly less so. Each of these 
appendices ends with some more technical results that may be consulted as 
the need arises. Appendix D contains two technical lemmas about vector 
fields in the plane, as well as some basic definitions about coordinate charts 
and differential forms on surfaces. Appendix E contains a proof of Borsuk's 
general theorem on antipodal maps that was stated in Chapter 23. 

Conventions and Notation 

A closed rectangle in ~2 has sides parallel to the axes, so is a subset of the 
form [a,b] x [c,d], with a<b and c<d. An open rectangle is a product 
of two open intervals, usually finite, but we occasionally allow them to be 
infinite. 

The unit intervall is [0, I] = {x E~: 0 ~ x ~ I}. 
The n-dimensional disk Dn is 

Dn = {(Xl, ... ,Xn)E~n:XI2+ ... +xn2~1}. 

The n-sphere S" is 

S" = {(Xl,· .. ,xn+I)E~n+I:XI2+ ... +Xn+/= 1}. 

The origin (0,0, ... ,0) in ~n is often denoted simply by O. 



APPENDIX A 

Point Set Topology 

AI. Some Basic Notions in Topology 

A topology on a set X is a collection of subsets, called the open sets, in­
cluding X itself and the empty set, such that any union of open sets is open, 
and any finite intersection of open sets is open. A topological space is a set 
X together with a topology. A collection of open sets is a basis for the open 
sets if any open set is a union of sets in the basis. For example, if X is a 
metric space, the open balls B.(x) = {y EX: distance (y,x) < e} form a basis 
for a topology on X. In particular, Euclidean space IRn with its usual distance 
function is a topological space. A neighborhood of a point in a topological 
space is an open set containing the point-or, occasionally, any set con­
taining such an open set. 

Any subset Y of a topological space is a topological space with the induced 
topology: the open sets are those of the form un Y, for U open in X. Such 
Y is called a topological subspace of X. In particular, any subset of IRn is a 
topological space. A subset Y is closed if its complement is open. A map 
f: X - Y from one topological space to another is continuous if 11(U) is 
open in X for every open set U in Y. A bijectionf: X - Y is a homeomorph­
ism if f and 1 1 are continuous. 

A topological space X is Hausdorff if, for any two distinct points in X, 
there are disjoint open sets, one containing one of the points, the other con­
taining the other. Any metric space is Hausdorff. Although we seldom need 
to assume spaces are Hausdorff, the reader will lose little by assuming that 
all spaces occurring in the book are Hausdorff. 

A subset K of a space X is called compact, if, for any collection of open 
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sets {Ua: a E stl} such that K is contained in the union of the Ua, there is a 
finite subset {a(I), ... , a(m)} of stl so that K is contained in the union 
Ua(l) U ... U Ua(m). The following are some basic facts about compact spaces: 

(A. 1 ) Iff: X -+ Y is continuous, and K is a compact subset of X, then f(K) 
is a compact subset of Y. 

(A.2) A compact subset of a Hausdorff space is closed. 
(A.3) If f: X -+ Y is continuous and bijective, and X is compact and Y is 

Hausdorff, then f is a homeomorphism. 
(A.4) A subset K of~' is compact if and only if it is closed and bounded. 

Exercise A.S. If K and L are disjoint compact subsets in a Hausdorff space 
X, show that there are disjoint open sets in X, one containing K, the other 
containing L. 

Exercise A.6. If K is compact, and, for each positive integer n, A. is a 
nonempty subset of K, show that there is a limit point, i.e., a point P in K 
such that every neighborhood of P meets A. for an infinite number of in­
tegers n. 

Exercise A.7. (a) Show that a rectangle [a,b] x [c,d] is homeomorphic to 
the closed unit disk {(x,y): ~ + l::; I}. (b) Show that ~2 is homeomorphic 
to the open unit disk {(x,y): ~ + l < I}. 

A subset X of ~. iE convex if, for any points P and Q in X, the line 
segment {t· P + (1 - t)· Q: 0::; t::; I} from P to Q is contained in X. 

Problem A.S. Show that any compact, convex subset of ~. that contains a 
nonempty open set is homeomorphic to the closed unit disk 

D' = {(XI, ... ,x.):x/+ ... +x.2::;1}. 

If aK is the boundary of K, i.e., aK is the set of points of K such that every 
neighborhood contains points inside and outside K, show that there is a ho­
meomorphism from K to Dn that maps aK homeomorphically onto the boundary 
Sn-I = aDn • 

If X and Yare topological spaces, the Cartesian products U x V of open 
sets U in X and V in Y form a basis for a topology in the Cartesian product 
X X Y, called the product topology. 

If X and Y are topological spaces, the disjoint union X il Y is a topological 
space. A set in the disjoint union is open when it is the union of an open 
set in X and an open set in Y. More generally, if {Xa: a E.sIl} is any collection 
of topological spaces, the disjoint union ilXa is a topological space, with 
open sets disjoint unions of open sets in each Xa. 

Any set X can be made into a topological space with the discrete topology, 
in which every subset of X is open. Equivalently, all points are open. 
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The interior of a subset A of a topological space, denoted Int(A), is the 
set of points that have a neighborhood contained in A. The closure of a 
subset A, denoted A, is the intersection of all closed sets containing A. 

A2. Connected Components 

A topological space X is connected if it cannot be written as a union of two 
nonempty disjoint sets, each of which is open in X. 

Exercise A.9. Show that each of the following is equivalent to X being 
connected: (i) X has no nonempty proper subset that is both open and closed; 
(ii) X cannot be written as the union of two nonempty disjoint closed subsets; 
and (iii) there is no continuous mapping from X onto the discrete space 
{O, I}. 

The following are basic facts about connected spaces: 

(A.lO) Iff: X - Y is a continuous, surjective mapping, and X is connected, 
then Y is connected. 

(A.I1) If X is a subspace of a space Y, and X is connected, then the closure 
X of X in Y is also connected. 

(A.12) If X is a union of a family of subspaces Xa , each of which is con­
nected, and each pair of which have nonempty intersection, then X 
is connected. 

(A.I3) The connected subsets of IR are the intervals. 

A connected component of X is a connected subset that is not contained 
in any larger connected subset. Each connected component is closed in X. 
Any two connected components of X are disjoint. The union of all connected 
subsets of X containing a point x is a connected component, called the con­
nected component of x in X. The space X is a disjoint union of its connected 
components. 

Exercise A.14. Let XC 1R2 be the union of the points (0,0), (0,1), and the 
lines {lin} x [0, 1], n = 1, 2, .... Show that these are the connected com­
ponents of X, but whenever X is written as the union of two open and closed 
subsets, the points (0,0) and (0, 1) belong to the same subset. 

A space is called locally connected if for every neighborhood V of every 
point x, there is a connected open neighborhood U of x that is contained 
in V. 

Exercise A.IS. If X is locally connected, show that all the connected com­
ponents of X are open in X. 
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A space X is path-connected if, for any two points x and y in X, there is 
a continuous mapping 'Y from an interval [a, b] to X that maps a to x and b 
to y. A space is locally path-connected if every neighborhood of every point 
contains a path-connected neighborhood of the point. 

Exercise A.16. If X is locally path-connected, show that all the connected 
components of X are path-connected and open in X. 

In particular, for U open in the plane or IRn, the connected components 
of U are open and path-connected. 

A3. Patching 

If a topological space X is the union of two sets A and B, both open or both 
closed, and f; A ~ Y and g; B ~ Y are continuous mappings from A and B 
to a space Y, such that f and g agree on A n B, then there is a unique con­
tinuous mapping h from X to Y that agrees with f on A and with g on B. 

If Y is a topological space, and R is any equivalence relation on Y, the 
set Y /R of equivalence classes is given the quotient topology; a set U is 
open in Y /R exactly when its inverse image in Y is open. If f; Y ~ Z is a 
continuous mapping that maps all points in each equivalence class to the 
same point, then f determines a continuous mapping 7: Y / R ~ Z so that the 
composite Y~Y/R~Z isf. 

Suppose YI and Y2 are two spaces, with open subsets VI of YI and V2 of 
Y2 , and a homeomorphism -It; UI ~ U2 is given between them. Then one can 
patch (or glue, or clutch) the spaces YI and Y2 together, to form a space Y. 
There will be maps 'PI; YI ~ Y and 'P2; Y2~ Y; Y will be the union of the 
open subsets 'PI(YI) and 'Pz(Yz), each 'Pi will map Yi homeomorphic ally onto 
'PI(Yi), with 'PI(UI) = 'Pz(Uz), and -It will be the composite 'Pz -1 0 'PIon UI. 

One can construct Yas the quotient space YlilYz!R, where R is the equiv­
alence relation consisting of pairs (UI ,-It(UI» for UI in UI , and of course the 
symmetric pairs (-It(UI), UI), together with all pairs (YI ,YI) for YI in Y1 and 
all pairs (Yz, yz) for Yz in Yz· 
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More generally, suppose we have a collection fa of spaces, for a in an 
index set 91., and, for each a and (3 in 91., we have an open subset Ua~ of 
fa, and a homeomorphism 

it~a: Ua~ -'» U~a. 

These should satisfy the conditions: 

(1) Uaa = fa, and itaa is the identity on fa; and 
(2) for any a, (3, and 'Y in 91., it~a(Uap n Ua-y) C U~-y and 

In particular, it a~ 0 it pa is the identity on U a~' Set 

where R is the equivalence relation: Ya in fa is equivalent to Y~ in fp if and 
only if Ya E Ua~, Y~ E U~a, and itpa(Ya) = y~. 

Let 'Pa be the map from fa to f that takes a point to its equivalence class. 
Give f the quotient topology, which means that a set U in f is open if and 
only if each 'Pa -I(U) is open in fa. 

Lemma A.17. (1) Each ~a<fa) is open in f; 
(2) ~a is a homeomorphism of fa onto ~a(fa); 
(3) f is the union of the sets ~a(fa); 
(4) ~a<UafJ) = ~fj(Ufja); and 
(5) on Uafj' iJfja = ~fJ-I 0 ~a' 

Proof. The fact that 'Pa is one-to-one onto its image, and the assertions (3)­
(5), are set-theoretic verifications, and left to the reader. The topology on 
f is defined to make each 'Pa continuous. To prove (1) and (2), it suffices 
to verify that if U is open in some fa, then 'f'a(U) is open in f, i.e., that, 
for all (3, 'P~ -1('Pa(U» is open in f~. But 'P~ -1('Pa(U» = it~a(U n Ua~), which 
is open since un Uap is open in Uail and itpa is a homeomorphism. D 

Exercise A.IS. Make a similar construction if each Ua~ is a closed subset 
of fa. 

A4. Lebesgue Lemma 

We make frequent use of the following lemma: 

Lemma A.19. (Lebesgue Lemma). Given any covering of a compact metric 
space K by open sets, there is an 13 > 0 such that any subset of K of diameter 
less than 13 is contained in some open set in the covering. 
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Proof. If not, there is for every integer n a subset An of K with diameter 
less than lin and not contained in any open set of the covering. From the 
fact that K is compact it follows that there is a limit point P, see Exercise 
A.6. Let U be an open set of the covering that contains P, and take r > 0 
so all points within distance r of P are contained in U. There must be (in­
finitely many) n with 1/ n < r /2 such that An meets the open ball of radius 
r/2 around P. But such A. must be contained in U, a contradiction. 0 

The following lemma will be used in Appendix B to construct a partition 
of unity: 

Lemma A.20. If U is an open set in ~n, there is a sequence of compact 
subsets K I , Kz, ... , whose union is U, and so that 

KI C Int(Kz) C Kz C Int(K3) C ... C Kn C Int(Kn+ l ) C .... 

Proof. Start with any countable sequence of open sets Ui that cover U 
such that the closure Ui is compact and contained in U; for example, 
one can take the Ui to be balls at centers with rational coordinates and 
rational radii. Take KI = UI . Then take Kz = UI U ... U Up, where p is 
minimal such that KI is contained in UI U ... U Up, and so on: if 
Km = UI U ... U Us, take Km+ I = UI U .. U U, where t is minimal so that 
Km is contained in VI U ... U V,. 0 

Remark A.21. The lemma is true, with the same proof, when V is replaced 
by any manifold whose. topology has a countable basis of open sets. 
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Analysis 

B 1. Results from Plane Calculus 

We list the basic results from calculus that were used in Chapters I and 2. 
As in those chapters, for simplicity, differentiable functions on a closed 
interval or rectangle are assumed to have differentiable extensions to some 
open neighborhood. Integrals of continuous functions on a closed interval, 
or a closed rectangle, are defined as limits of Riemann sums. The next five 
basic facts from calculus are stated for easy reference, in the form we need. 
Consult your favorite calculus book for proofs. 

(B. I) Fundamental Theorem of Calculus. If a continuous function f is the 
derivative of a function F on an interval [a, b], then 

ff(X)dx = F(b)-F(a). 

(B.2) Mean Value Theorem. Iff is continuous on an interval [a,b], there 
is an x* with a < x* < b such that 

1 Lb - f(x) dx = f(x*). 
b-a a 

(B.3) Chain Rule. If y(t) = (x(t),y(t)), a:=; t:=; b is a differentiable path on 
an interval [a, b], and f is a differentiable function on a neighborhood of 
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,},([a, b D, then fo 'Y is differentiable on [a, b], and 

d ~ ~ ~ ~ 
-(f(,,/(t))) = -(x(t),y(t»- + -(x(t),y(t»-. 
& ~ & ~ & 

(B.4) Equality of Mixed Partial Derivatives. Iff is a ~oo function on an 
open set in the plane, then 

(B.S) Fubini's Theorem. If f is a continuous function on a rectangle 
R = [a, b] x [c, d], then 

JJf(x,y)~dy = f[ff(x,Y)dY]~ = f[ff(x,Y)~]dY. 
R 

Proposition B.6 (Green's Theorem for a Rectangle). Ifp and q are contin­
uously differentiable functions on a rectangle R = [a, b] x [c, d], then 

II (:: -:~) ~dy = f p(x, c)~ + f q(b,y)dy 
R 

- fp(X,d)~- f q(a,y)dy. 

Proof. By Fubini's theorem and the fundamental theorem of calculus, 

JJ::~dY = f[J:::~]dY = f[q(b,y)-q(a,Y)]dY; 
R 

II:~ ~dy = f [J::~ dY]~ = f [p(x,d) - p(x, c)]~. 
R 

Green's theorem results by subtracting these two equations. o 

Writing W = p(x,y)~ + q(x,y)dy, this says that 

fJ dW = 1 w+l w-i w-i W, 
'VI "12 "13 "14 

R 

where 'VI> 'V2, 'V3, and "/4 are the four sides of the rectangles, as in 
Chapter 1. 

Corollary B.7. If dw = 0, then 

( w+l W 
),YI 12 

i w+l w. 
'Y3 'Y4 
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Exercise B.S. Iffis continuous on [a,b], and If(t)I:SM on [a,b], show 
that II:.t(t) dtl :s M· (b - a). 

The following result will be used in Appendix D: 

Lemma B.9. Iff is a C(6"" function in a neighborhood of P = (a, b) in 1R2, 
with f(P) = 0, then there are C(6"" functions fl and fz so that 

f(x,y) = (x - a)!I(x,y) + (y - b)fz(x,y) 

in a neighborhood of P. 

Proof. We may assume P = (0,0). By the fundamental theorem of calculus 
and the chain rule, 

f(x, y) = (~- (f(tx, ty)) dt 
Jo at 

= x [I af (tx, ty) dt + y [I af (tx, ty) dt . 
Jo ax Jo ay 

The functions 

fl(x, y) = (I af (tx, ty) dt and fz(x, y) 
Jo ax 

are the required C(6"" functions. 

B2. Partition of Unity 

llaf 
-(tx,ty)dt 

o ay 

D 

For construction of the Mayer-Vietoris sequence for open sets in the plane, 
we need the following result: 

Proposition B.10 (Partition of Unity). Suppose an open set V in IRn is the 
union of a sequence VI, V2 , ••• of open sets with the property that each 
point is contained in Vi for only finitely many i. Then there is a sequence 
of nonnegative C(6"" functions rpi on V such that the closure (in U) of the 
support of rpi is contained in Vi' and };~~I rpi == 1 on V. 

(We will construct these functions so that only finitely many <Pi are nonzero 
in a neighborhood of any point of V, so the sum is a well-defined C(6"" func­
tion.) 

Proof. There are several steps. 
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Step 1. There is a '(6'" function f on IR that is zero on the negative half line 
and positive on the positive half line. Such a function is 

if x>O, 

if x:s O. 

Exercise B.11. Verify that this is infinitely differentiable by showing that 
any derivative of exp(-l/x) has the fonu (P(x)/xm)exp(-l/x) for some 
polynomial P and some exponent m. 

Step 2. Given a bounded rectangle (a., b.) x ... x (an, bn), there is a '(6'" 

function h in IRn that is positive on the rectangle, and zero outside the rect­
angle. In fact, the function g(x) = f(x) ·f(l - x) is positive on (0, 1) and zero 
outside this interval, and this leads to the required function 

n ( ) 
x·-a· 

h(x., . .. , xn) = IIg bl
, _ I, • 

1=1 I a, 

Step 3. If A is a compact subset of V, there are '(6'" functions (Ji so that the 
closure of the support of (Ji is contained in Vi' and the sum 2~=. (Ji is every­
where positive on A. To construct them cover A by a finite number of rect­
angles Ra such that the closure of each Ra is contained in some Vi' and use 
Step 2 to construct ha that are positive on Ra and zero outside. Take (J. to 
be the sum of those ha such that Ra is contained in V., let (J2 be the sum 
of those among the others such that the closure of the support is contained 
in V2> and continue in this way until all ha are used; set the other (Ji equal 
to zero. 

Step 4. To complete the proof, write V as an increasing union of compact 
sets K. C K2 C ... as in Lemma A.20. Let Aj = Kj \ Int(Kj_.) (where we set 
Kj = 0 for j:S 0). Let Wj = Int(Kj +.) \ Kj- 2• Note that Aj is a compact subset 
of the open set Wj . Apply Step 3 to each compact set Aj C Wj with its open 
covering {Vi n W), obtaining functions (Jij so that the closure of the support 
of (Jij is contained in Vi n Wj and with 2~=. (Jij everywhere positive on Aj . 
Define ljIi to be the sum 2~~. (Jij' Only finitely many (at most three) tenus 
in this sum are nonzero in some neighborhood of any point, so ljIi is a '(6"" 

function the closure of whose support is contained in Vi . The sum 
IjI = 2~=. ljIi is similarly a '(6'" function, and I\J is positive on each Aj , so it is 
positive on all of V. Now 

'Pi 

satisfies all the required conditions. o 

Exercise B.12 (Partition of Unity for Arbitrary Coverings). Suppose 
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au = {U",: a E .Ill} is an arbitrary open covering of an open set U in IRn. Show 
that there is a sequence of nonnegative ~oo functions 'PI , 'P2, . . . on U such 
that: (i) the closure (in U) of the support of 'Pi is contained in some open 
set Ua(i); (ii) for each P in U there is a neighborhood of P such that only 
finitely many 'Pi are nonzero on the neighborhood; and (iii) L~= I 'Pi == 1. 

Exercise B.13. Extend these results on partitions of unity to the case where 
U is any manifold that has a countable basis of open sets. 

Exercise B.14. For 0 <'1 <'2 construct a ~oo function IjJ on the plane that 
vanishes on the disk of radius '1 centered at the origin, and is identically 1 
outside the disk of radius '2 centered at the origin, and takes values in the 
interval (0,1) between the two circles. 
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Algebra 

Cl. Linear Algebra 

In this book, unless otherwise stated, vector spaces are real vector spaces. 
The vector space IRn consists of n-tuples (XI, . . . ,xn) of real numbers, with 
coordinatewise addition and multiplication by scalars. A set of elements {e.,} 
is a basis for a vector space if every element in the space has a unique 
expression in the form ~aea, for some real numbers Xa with only finitely 
many Xa nonzero. A vector space isfinite dimensional if it has a finite basis. 
The number of elements in a basis is independent of choice of basis, and is 
the dimension of the space; the dimension of V is denoted dim(V). Choosing 
a basis el, ... , en for V sets up an isomorphism of V with IW, with the 
vector Xlel + ... + Xnen in V corresponding to (XI' ... ,xn) in IRn. The 
standard basis of IRn is the basis {e;} where ei has a 1 for its ith coordinate, 
and zeros for the other coordinates. 

If L: V~ W is a linear mapping, the kernel Ker(L) is the subspace of V 
consisting of vectors mapped to zero, and the image Im(L) is the subspace 
of W consisting of vectors that can be written L(v) for some v in V. 

The rank-nullity theorem asserts that if L: V ~ W is a linear mapping of 
finite-dimensional vector spaces, 

dim(Ker(L» + dim(lm(L» = dim(V). 

If W is a subspace of a vector space V, the quotient space V /W is defined 
to be the set of equivalence classes of elements of V, two vectors in V being 
equivalent if their difference is in W. This set V /W has a natural structure 
of a vector space, so that the mapping from V to V /W that takes a vector 

378 



C 1. Linear Algebra 379 

to its equivalence class is a linear mapping of vector spaces. The kernel of 
this mapping from V to V /W is W. 

Conversely, if V ~ U is a surjective linear mapping of vector spaces, and 
W is the kernel, this determines an isomorphism of V /W with U. 

Suppose L: V ~ V'is a linear mapping of vector spaces, and W is a sub­
space of V, and W' a subspace of V'. If L(W) is contained in W', then L 
determines a linear mapping. 

V/W ~ V'/W' 

of quotient spaces, which takes the class of v in V to the class of L(v) in 
V'. 

If V and Ware vector spaces, the direct sum VE9W can be defined as the 
set of pairs (v, w), with v in V and w in W, with addition defined by 
(v, w) + (v', w') = (v + v', w + w'), and multiplication by scalars by 
r' (v, w) = (r' v, r' w). For example, IR' is the direct sum of n copies of R 
More generally, given any collection Va of vector spaces, for IX in some 
index set .sIl, an element of direct sum E9Va is determined by specifying a 
vector Va in Va for each IX in .sIl, with the added condition that Va can be 
nonzero for only finitely many IX. Addition and multiplication by scalars are 
defined component by component, as for two factors. The same definition, 
but without the restriction that only finitely many are nonzero, defines the 
direct product, denoted IIVa • 

For vectors u = (XI, ... ,x,) and v = (YI' ... ,y,) in IR', the dot product 
is the number U' v = XIYI + ... + XnYn' The length of u is Ilull = VU:U. The 
projection of u on v is the vector tv, where t = (u' v)/(v' v); the length of 
this projection is lu· vl/llvll. 

An m by n matrix A = (ai.j) determines a linear mapping L: IRn ~ IRm that 
takes ej to L(e) = 'J.7'=laj.jej. Every linear mapping from IR' to IRm arises from 
a unique such matrix. If M: IRm~ IRI corresponds to an I by m matrix B = (aj,k), 
the composite MoL: IRn ~ IRI corresponds to the product matrix B . A, where 
the (i, J) entry of B' A is 'J.~~lbi.kak.j' We need this mainly for (2 x 2) ma-

trices, where a matrix A = [~ ~] is a matrix, the linear mapping corre­

sponding to A takes a vector.v = (x,y) to the vector (ax + by, ex + dy). The 
determinant of A, denoted det(A), is ad - bc. If the determinate is nonzero, 
A is invertible, with inverse 

A-I = _1_[ d -b]. 
ad-bc -c a 

The invertible (2 x 2)-matrices form a group, denoted GL2 R This group 
has a topology, determined by its embedding as an open subset of 1R4: the 
complement of the set of (a, b, c, d) with ad - bc = O. 

Exercise C.I. Show that the product GLzIR x GLzIR~GLzIR, A XB~A 'B, 
and the inverse map GL21R~ GL21R, A ~ A -I, are continuous mappings. 
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Lemma C.2.1f det(A) > 0, there is a path y. [a, b] ~ GL21R such that ')'(a) = A 

and y(b) = [b ~J. If det(A) < 0, there is a path y: [a, b] ~ GL21R such that 

')'(a)=Aand')'(b)=[b -~J. 
Proof. We will find a sequence of paths, each taking the matrix to a simpler 
one. For example, by multiplying a column of a matrix by t, with t varying 
in [a, 13], for a and 13 positive, we can find a path changing the lengths of 
the column. In particular, we can assume the first column of A is a unit 
vector, so it can be written in the form (cos({}), sin({})) for some {} in [0, 2'IT]. 
Then the path 

(t) = [COS(t) Sin(t)] . A 
"( -sin(t) cos(t) , 

takes A to a matrix whose first column is (1,0). Then one can gradually 
project the second column on the line perpendicular to the first, via the path 

() = [ 1 (1 - t)b] 
"(t 0 d ' 

to get to a matrix where the second column is (0, d). Changing the length 
of the second column as at the beginning, we can get it either to (0,1) or 
to (0, -1), as asserted. 0 

Problem C.3. Generalize to GLn IR, showing that GLn IR has two connected 
components for all n;::' 1. 

C2. Groups; Free Abelian Groups 

A set of elements in a group G generates G if every element in G can be 
written as a (finite) product of elements in the set and inverses of elements 
in the set. 

If H is a subgroup of a group G, a left coset is a subset of G of the form 
g. H = {g. h: hE H}. The group G is a disjoint union of its left cosets; gl 
and g2 are in the same left coset exactly when there is an element h in H 
with gl . h = g2. The set of left cosets is denoted by G /H. There is a natural 
map 'IT from G onto G /H that takes an element in G to the coset containing 
it. A subgroup H is a normal subgroup if, for all g in G and h in H, g . h . g-I 
is in H. In this case G/H gets the structure of a group, in such a way that 
the natural map 'IT: G~G/H is a homomorphism of groups. 

The identity element in a group G is usually denoted bye, or eG if there 
is chance of confusion. If <p: G ~ G' is a homomorphism of groups, the 
kernel N = {g E G: <p(g) = ed is a normal subgroup of G, denoted Ker(<p). 
Then <p determines a one-to-one homomorphism ip: G /Ker( <p) ~ G' such that 
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<p = (j) 0 1T. If <p is surjective, then (j) is an isomorphism. More generally, if 
N is any normal subgroup of G, a homomorphism from G/N to a group G' 
determines a homomorphism from G to G' such that N is contained in its 
kernel. The image <peG) of any homomorphism <p: G~ G' is a subgroup of 
G', denoted Im(<p), and <p determines an isomorphism of G/Ker(<p) with 
Im(<p). If NeG and N' C G' are normal subgroups, and <p: G~ G' is a ho­
momorphism such that <peN) eN', then <p determines a homomorphism 
(j): G/N~G'/N'. 

The set of homomorphisms from G to G' is denoted by Hom(G, G'). So 
if N is a normal subgroup of G, 

Hom(G/N,G') ~ {<pEHom(G,G'):<p(N)=ed. 

An important normal subgroup of a group G is the commutator subgroup, 
denoted [G, G]. This consists of all finite products 

g,h,g,-'h,-' . g2h2g2 -lh2 -I •...• g.h,.g. -'h. -I, 

for elements g I, hi, gh h2' . . . , g., h. in G. The normality of this subgroup 
comes from the identity g. (ab)· g-I = (g. a· g -I). (g. b· g-I). If A is an abelian 
group, any homomorphism of G to A sends all commutators to the identity, 
so 

Hom(G/[G,G],A) ~ Hom(G,A). 

We usually use an additive notation for the product in abelian groups, 
writing g + h instead of g. h, with the identity element denoted o. The group 
of integers under addition, which is the infinite cyclic group, is denoted l. 
The abelian group with just one element is often denoted o. If A is an abelian 
group, and X is any set, the set of functions from X to A has a natural 
structure of abelian group, with (f + g)(x) = f(x) + g(x). In particular, if G 
is any group, the set of homomorphisms Hom(G,A) has the structure of an 
abelian group. 

Exercise C.4. If <p: G~ G' is a homomorphism of groups, show that the 
mapping from Hom(G',A) to Hom(G,A) that takes IjI to ljIo<p is a homo­
morphism of abelian groups. 

If A and B are abelian groups, the direct sum A EB B is the set of pairs 
(a, b), with a in A and b in B, with addition defined by 
(a, b) + (a', b') = (a + a', b + b'). More generally, given any collection Aa 
of abelian groups, the direct sum EBAa consists of collections faa}, with aa 
in Aa , with the condition that aa can be nonzero for only finitely many 0:. 

Addition is defined component by component, as for two factors. For ex­
ample, l' is the direct sum of n copies of l. The same definition, but with­
out the restriction that only finitely many are nonzero, defines the direct 
product, denoted IIAa. 

Exercise C.S. If an abelian group C contains subgroups A and B such that 
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every element of C can be written as a sum of an element in A and an 
element in B, and A n B = {O}, show that A EEl B is isomorphic to C. 

Exercise C.6. For any collection A" of abelian groups, and any abelian 
group B, construct an isomorphism 

Hom(EElA" ,B) == II Hom(A" ,B) . 

An abelian group A is a free abelian group, with basis {ea}, if every ele­
ment in the group has a unique expression in the form Lnaea, for some in­
tegers na, with only finitely many na nonzero. If the number of elements in 
a basis is a finite number n, we say A is a free abelian group of rank n. As 
we will see below, this number is independent of choice of basis. 

Exercise C.7. (a) If A and B are free abelian groups, show that AEElB is 
free abelian, and if the ranks are finite, rank(AEElB) = rank(A) + rank(B). 
(b) If F is free abelian, and A is abelian, and Ij): A - F is a surjective ho­
momorphism, show that A is isomorphic to the direct sum of F and Ker(Ij)). 

More generally, a set {e,,} of elements in an abelian group A is called 
linearly independent if no linear combination of them is zero, i.e., there is 
no set of integers {na }, with only finitely many nonzero, but not all zero, 
such that Lnae" = O. The maximum number of elements in a linearly inde­
pendent set in A is called the rank of A . We will prove at the end of this 
section that any two maximal linearly independent sets have the same num­
ber of elements, at least when this number is finite. 

Unlike the case with vector spaces, however, a maximal set of linearly 
independent elements in an abelian group need not generate the group. For 
example, a finite abelian group has no independent elements. Even for groups 
with no elements of finite order, however, it is not true: 

Exercise C.S. Show that the rank of the abelian group II) of rational numbers 
is 1. 

For any set X, the free abelian group on X, denoted F(X), can be defined 
as the set of finite formal linear combinations Lnxx, with nx integers, the 
sum over a finite subset of X. The addition is defined coordinate-wise: 
Lnxx + Lmxx = L(nx + mx)x. More precisely, define F(X) to be the set of 
functions from X to 1L. that are zero except on a finite subset of X. This is 
an abelian subgroup of the abelian group of functions from X to 1L.. To the 
function f: X -1L. is associated the expression 'i/(x)x. The element x cor­
responds to the function that takes x to I and all other elements of X to zero. 
These elements form a basis for F(X). 

For any abelian group A, and any function Ij) from a set X to A, there is 
a unique homomorphism from F(X) to A that takes LnxX to Lnxlj)(x). In par­
ticular, if Ij): X - Y is any function, it determines a homomorphism from 
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F(X) to F(Y), taking ~nxX to ~nx<p(x), or taking n\x\ + ... + n,xr to 
n\<p(x\) + ... + nr<p(xr). 

Exercise C.9. If <p: X ~ Y is one-to-one, show that F(X) ~ F(Y) is one-to­
one, and if <p: X ~ Y is surjective, show that F(X)~ F(Y) is surjective. 

If A is an abelian group, then the set of homomorphisms Hom(A, IR) from 
A to IR forms a real vector space, with scalar multiplication by the rule 
(rf)(x) = r ·f(x) forfin Hom(A, IR), r a real number, and x inA. If <p: A~A' 

is a homomorphism of abelian groups, then there is a linear mapping 
<p*: Hom(A', IR)~ Hom(A, IR) of vector spaces, defined by the formula 
<p*(f) = fo <po 

Lemma C.I0.lffP:A~A' is one-to-one, then fP* is surjective. 

Proof. We need some preliminaries. There exists a set W3 = {x,,: a E stl} of 
elements in A', such that: 

(i) no fmite linear combination ~n..x" with integer coefficients is in the 
image of <p unless all nIl are zero; and 

(ii) W3 is maximal with this property. 

This is a consequence of Zorn's lemma, exactly as in the proof that every 
vector space has a basis. Of course, there may be many such sets W3, but 
we fix one. It follows that for any element x in A', there is a nonzero integer 
n and integers n", all zero except for finitely many, so that nx - ~n..x" is 
in <p(A); otherwise one could enlarge W3 by adding x to it. Therefore for any 
x in A' there is at least one equation of the form 

(C.Il) 

with y in A, n not O. 
Given f in Hom(A, IR), we define g in Hom(A', IR) by setting 

1 
g(x) = - (f(y)) , 

n 

for any integer n;60 and yEA so that (C.Il) holds. To see that g is well 
defined, suppose also 

mx = ~m..x" + <p(z) , 

with z EA and m;6 O. Then 

(mnx - m<p( y)) - (nmx - n<p(z)) 

<p(nz) - <p(my) = <p(nz - my) . 
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By (i), this element must be zero, and since q> is one-to-one, nz must be 
equal to my. Therefore, 

I 
-(f(z» 
m 

as required. 

1 
-(f(nz» 
mn 

I 
-(f(my» 
mn 

1 
-(mJ(y» 
mn 

I 
-(f(y» , 
n 

The proof that g is a homomorphism is similar, for if x and x' are two 
elements of A', write 

Then mn(x ± x') = ~(mna ± nma)xa + q>(my ± nz), so 

I I I 
g(x ± x') = - (f(my ± nz» = - J(y) ± - J(z) = g(x) ± g(x') . 

mn n m 

And, by definition, if x = q>(y), then g(x) = J(y) , so q>*(g) = J. D 

Corollary C.12. Suppose S is a set with n elements in an abelian group A, 
and S is a maximal set oj linearly independent elements. Then the dimension 
oj Hom(A, IR) is equal to n. In particular, any two maximal sets oj linearly 
independent elements in A have the same number oj elements. 

Proof Let F be the free abelian group on S, and q>: F~A the natural map. 
The linear independence of S assures that q> is one-to-one. The maximality 
of S assures that the set 00 considered in the proof of the lemma is empty. 
The proof of the lemma shows that the map q>* from Hom(A, IR) to Hom(F, IR) 
is an isomorphism. The functions that take value I on a given element in 
S, and value 0 on the other elements, give a basis of Hom(F, IR) with n 
elements, and this shows that the dimension of Hom(A, IR) is n. Note that 
if S were a maximal set of linearly independent elements that were infinite, 
the same argument shows that Hom(A, IR) == Hom(F, IR) is infinite 
dimensional. D 

Exercise C.13. Show conversely that if Hom(A, IR) has finite dimension n, 
then A has rank n. 

Exercise C.14. If B~C is surjective, with kernel A, show that if two of 
the three abelian groups A, B, and C have finite ranks, so does the third, 
and rank(B) = rank(A) + rank(C). 

Given homomorphism q>: A~B and 1/1: B~C, one says that the sequence 
A ~ B ~ C is exact, or exact at B if the image of q> is equal to the kernel 
of 1/1. To say that the sequence O~ A ~ B is exact is the same as saying the 
map from A to B is one-to-one, and to say that A~B~O is exact is the 
same as saying the map from A to B is surjective. 
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Problem C.1S. If A-B-C is exact at B, show that the dual sequence 
Hom(C, IR)- Hom(B, IR)- Hom(A, IR) is exact at Hom(B, IR). 

A sequence Ao-A I - ••• -An-An+ 1 of abelian groups and homo­
morphisms between them is called exact if it is exact at each of the groups 
A;, for 1:s i:Sn. 

Problem C.16. Show that if O-A I - ••• -An-O is exact, and each of 
the abelian groups A; has finite rank, then 

n 

2: (-Ii rank(A;) O. 
;=1 

C3. Polynomials; Gauss's Lemma 

For any field K the ring of polynomials K[X] in a variable X over K is a 
unique factorization domain. In fact, every nonzero Pin K[X] has a unique 
factorization P = a' lIP;"i, with a in K and each P; an irreducible polynomial 
that is monic.9 This follows from the fact that one has a division algorithm 
for polynomials, just as one has for integers. In particular, any finite col­
lection of nonzero polynomials has a greatest common divisor, which is 
unique if, in addition, it is required to be monic. The quotient field of K[X], 
consisting of all ratios P /Q, Q ~ 0, is denoted K(X). 

The ring of polynomials K[X, Y] in two variables X and Y is a subring of 
the ring K(X)[y], which, by what we have just seen, is a unique factori­
zation domain. 

Lemma C.17 (Gauss). Let F be a polynomial in K[X, Y]. If F is irreducible 
in K(X) [Y], then F is irreducible in K[X, Y]. 

Proof. Given F in K[X, Y], write F = ao(X) + al(X)Y + ... + an(X)yn, with 
a;(X) in K[X]. The greatest common divisor of ao(X), ... , anCX) is called 
the content of F, and denoted c(F). Call F primitive if c(F) = 1. 

We show first that the product of two primitive polynomials is also 
pnmltlve. To see this, suppose F = ao + al Y + ... + anyn and 
G = bo + b l Y + ... + bm ym are primitive. Suppose a nonconstant polyno­
mial p = p(X) divides all the coefficients of F· G. Take the minimal i and 
j such that p does not divide a; and bj • Then the coefficient of yi+j in F· G 
has the form 

9 A monic polynomial is one of the form Xm + a1Xm- 1 + ... + am' 
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Since all the tenns but the first are divisible by p, and the first is not, this 
is a contradiction. 

It follows from this that for any two polynomials F and G in K[X, Y), 
c(F' G) = c(F)' c(G). To see this, write F = c(F)· F l , G = c(G)' G l , with 
Fl and G l primitive. Then F· G = c(F) . c(G)' Fl' G l , and Fl . G l is prim­
itive, from which it follows that the content of F· G is c(F)· c(G). 

Given any nonzero G in K(X)[Y) , one can write G = g . G l , with g in 
K(X) and G l a primitive polynomial in K[X, Y). Now suppose F is an ir­
reducible polynomial in K[X, Y), and that F factors in K(X)[Y) into G· H, 
with both G and H of positive degree in Y. Write G = g' G l , H = h· HI, 
with G l and HI primitive, and g = p/q, h = r/s, withp, q, r, s EK[X). Then 
q·s·F=p·r·GI·HI in K[X,Y). It follows that q·s·c(F)=p·r. Hence 
F = c(F)' Gl • HI, which contradicts the irreducibility of F in K[X, Y). D 

Exercise C.tS. Show that, for any field K, K[X, Y) is a unique factorization 
domain. Generalize to polynomials in n variables. 

If P is a polynomial in K[X), the residue class ring K[X)/(P) is the set 
of equivalence classes of polynomials in K[X), two being equivalent when 
their difference is divisible by·P. The residue classes K[X)/(P) have the 
structure of a ring so that the natural map K[X]-K[X]/(P) is a homo­
morphism of rings. 

Lemma C.t9. If P has degree n, then the images of I, X, ... ,xn - l form 
a basis for K[Xl/(P) over K. 

Proof. These elements span, since, by dividing by P, any polynomial is 
equivalent to a polynomial of degree less than n. They are linearly inde­
pendent, since no nonzero polynomial of degree less than n is divisible 
by P. D 

Exercise C.20. Show that K[X]/(P) is a field if and only if P is irreducible. 



APPENDIX D 

On Surfaces 

D 1. Vector Fields on Plane Domains 

The object of this section is to prove Lemmas 7.10 and 7.11; we refer to 
Chapter 7 for notation. Suppose <p: U -') U' is a diffeomorphism from one 
open set in the plane onto another. If <p(x,y) = (u(x,y), v(x,y» in coordi­
nates, at any point Pin U, we have the Jacobian matrix 

[
au (P) au (P)] 

J~.P = ~~ ~~ , 
-(P) -(P) 
ax oy 

which we regard as a linear mapping from vectors in ~2 to vectors 
in ~2 (see Appendix C). If V is a continuous vector field in U, the 
vector field 'P* V in U' is defined by the formula 

(<p*V)(P' ) = J~.p(V(P», 

where P is the point in U mapped to p' by cp, i.e., P = cp-l(p l ). If V has 
singularities in the set Z, cp* V will have singularities in cp(Z). 

Lemma D.l. Index~(p)(cp*V) = IndexpV. 

Proof. There is no loss in generality by assuming that P and P' are the origin 
0, that U is a disk containing the origin, and that V is not zero in U\{O}. 

387 
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Let J be the Jacobian of 'P at O. Our first goal is to show that 

(D.2) 

This will reduce the problem to the easier case of a linear mapping. We 
want to construct a homotopy from 'P to J. Define 

{~'P(t. Q), 
QXt ~ t 

J(Q), 
K: UX [0, 1] ~ 1R2, 

O<t::::; 1, 

t=O. 

Claim D.3. This mapping K is C(6"'. 

To prove this claim, we use Lemma B.9, replacing U by a smaller disk 
if necessary, so we can write 

with C(6'" functions Ul, U2, VI , and V2' Then 

K«x, y) x t) = (XUI(tx, ty) + YU2(tx, ty), XVI(tX, ty) + yvitx, ty» 

for all 0:5 t:5 I, and this expression is clearly C(6"'. 

Now H(Q x t) = (K, hey) gives a homotopy from J * V to 'P* V in the sense 
of Exercise 7.3, and (D.2) follows from that exercise. 

We are therefore reduced to showing that Indexo(J* V) = Indexo(V) for any 
invertible linear mapping J. Now we use Lemma C.2 to know that there is 
a path in the space of invertible matrices from J either to the identity matrix 

I, or to the matrix I' = [~ ~ I J. If such a path is given by a formula t ~ J" 

a:5 t:5 b, then the homotopy H(Q x t) = (J,)*(V) gives a homotopy from 
J*V to I*Vor to I'*V, and the same exercise shows that the index doesn't 
change. Of course I*V= V, so all that remains is to prove that 
IndeXo(I' *V) = IndeXo(V). 

If Vex, y) = (p(x, y), q(x, y», then by the definition of I' *, 

(I'*V)(x,y) = (p(x, -y), -q(x, -y». 

So one is reduced to the elementary problem of showing that if 
F(x,y) = (p(x,y), q(x,y», and R(x,y) = (x, -y), the mappings RoFoR and 
F, when restricted to a small circle, have the same winding number around 
the origin. This is easy to do directly from the definition of winding number, 
and we leave the details as an exercise. (This is also special case of the fact 
that the degree of a composite of mappings of circles is the product of the 
degrees of the mappings, see Problem 3.27. In this way one can argue di­
rectly with any linear mapping J, since J * V = J 0 VO J -[ .) D 

Now we consider the other lemma from Chapter 7. 
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Lemma D.4. Suppose V and Ware continuous vector fields with no sin­
gularities on an open set U containing a point ~ Let D CUbe a closed 
disk centered at,.!'. Then there is a vector fieJd V with no singularities on 
U such that (i) V and V agree on U \ D; (ii) V and Wagree on some neigh­
borhood of P. 

Proof. Suppose first that the dot product V(P) . W(P) is positive. Shrinking 
the disk, we may assume that V(Q) . W(Q) > 0 for all Q in D. As in Step 2 
of the proof of Proposition B.lO (see Exercise B.14), there is a ~~ function 
p that is identically 1 in a neighborhood of P, and identically 0 outside D, 
and taking values in [0,1]. Let 

-V(Q) = (1 - p(Q»V(Q) + p(Q)W(Q). 

Then V(Q)' V(Q) > 0 for all Q in U, so V has no singularities, and con­
ditions (i) and (ii) are clear. 

For the general case, it therefore suffices to find a vector field VI with 
no singularities that agrees with V outside D, and such that VI(P)' W(P) is 
positive. This can be done by rotating V inside D. With the same func­
tion p, and -fr the angle from the vector V(P) to the vector W(P), we can 
take 

[ COS(P(Q)-fr) -Sin(p(Q)-fr)] . V(Q) 
sin (p(Q)-fr) cos(p(Q )-fr) . D 

D2. Charts and Vector Fields 

We start with a brief definition of a (smooth) surface X, and define what 
we mean by a vector field on X and the index of a vector field at a point 
on X. A surface X with an atlas of charts is a Hausdorff topological space, 
equipped with a collection of homeomorphisms 

with Ua open in the plane [R2, and 'Pa(Ua) open in X; the a are in some index 
set. The surface X should be the union of these open sets 'Pa(Ua). Let 
Ua~ = 'Pa -1('Pa(Ua) n 'P~(U~». These charts determine change of coordi­
nate mappings 'P~a = 'P~ -I 0 'Po<' which are homeomorphisms from U 0<13 to 
U13a • 
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qIOl 

U~U~ _____________ qlP_Ol _________ ~~ ~. 

To give X a differentiable, or smooth, structure, the requirement is that these 
changes of coordinates CPJ3a should be '(6'" mappings for all n and ~. One 
then has a notion of a differentiable function on an open subset U of X: it 
is function f such that f 0 CPa is differentiable on CPa -1 (U) n U a for all n. 

Another collection of charts {Wa': Ua'~ X} is said to be equivalent to this 
one if all the changes of coordinates from one to the other are all '(6"', i.e., 
all CPa -1 0Wa' are '(6'" where defined. We say that this collection defines the 
same surface. More precisely, a smooth (or '(6"') surface is the topological 
space X together with an equivalence class of families of charts. For the 
sphere S2, the two mappings cP and W we obtained from stereographic pro­
jection in §7c form a family of charts. Stereographic projection from other 
points gives charts that are compatible in this sense. 

If f is a '(6'" function on some open set in 1R3, and X is the locus where 
f(x,y, z) = ° and grad(f) ¥ 0, then X is a smooth surface. If for example 
(aflaz)(p) ¥ 0, the implicit function theorem says that projection from X to 
the xy-plane is locally one-to-one near P, and the inverse to this projection 
provides a chart near P. 

If X is a surface given by charts as above, a vector field V on X can be 
defined as a compatible collection of vector fields Va in each of the coor­
dinate neighborhoods U a' The compatibility means that 

(CPJ3a)*(Valuap) = vJ3lup.' 

where (CPJ3a)* is defined as in the preceding section. The vector field has a 
singularity at a point P in X if, with some n such that CPa(P a) = P, the cor­
responding Va has a singularity at Pa in Ua. By Lemma D.I the index of 
Va at Pais independent of choice of coordinate chart. This index is defined 
to be the index of V at P. 

The surface X is orientable if it has an atlas of charts such that all the 
determinants of the lacobians of the change of coordinate mappings are pos­
itive. An orientation is a choice of such an atlas, with two atlases defining 
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the same orientation if all changes of coordinates from one to the other have 
positive detenninants of Jacobians. An orientable surface has two orienta­
tions, with two orientations defining the opposite orientation if all changes 
of coordinates from one to the other have negative Jacobian detenninants. 

D3. Differential Forms on a Surface 

If '1': u~ U' is a diffeomorphism from one open set in the plane to another, 
and 00 = fdx + gdy is a f.(j,oo I-fonn on U', one can define a pull-back I-fonn 
'1'*00 on U by the fonnula 

'P*(fdx+gdy) = f('P(X,y)).(au(X,y)dx+ au (x, y)dy) 
ax ay 

+ g('P(x,y». (av (x,y)dx + av (x,y)dy) 
ax ay 

= ((f0'P). au + (go '1') . av) dx 
ax ax 

+ ((f ° '1') . au + (g ° '1') • av) dy , 
ay ay 

where 'P(x,y) = (u(x,y), v(x,y». Similarly, if 00 = hdxdy is a 2-fonn on U', 
the pull-back 2-fonn '1'*00 on U is defined by the fonnula 

( auav auav) 
'P*(hdxdy) = (h°'P). -- - -- dxdy. 

axay ayax 

Exercise D.S. (a) If 1jI: U' ~ U' is a diffeomorphism, and 00 is a I-fonn or 
2-fonn on U', show that 'P*(IjI*oo) = (ljIo '1')*(00). (b) Show that 'P*(dj) = d('P*f) 
for a f.(j,oo functionf on U', and 'P*(doo) = d('P*oo) for 00 a I-fonn on U'. 

Given a surface X with an atlas of charts 'Pa: U a ~ X as in §D2, a function 
(or O-fonn) is given by a collection of functions fa on Ua such that they 
agree on the overlaps: fa = fll ° 'Plla on U all· Define a onejorm 00 on X to be 
a collection of I-fonns OOa on Ua that agree on the overlaps, i.e., such that 

ooalua~ = ('Plla)*(oolllu",,) 

for all pairs a and 13. A two-form is defined likewise, taking the OOa to be 
2-fonns on Ua. 

If f is a f.(j," function (or zerojorm) on X, its differential df is a I-fonn, 
defined to be the I-fonn d(f°'Pa) on Ua • Similarly, if 00 is a I-fonn on X, 
given by I-fonns OOa on Ua, the differential of 00 is the 2-fonn doo defined 
to be the 2-fonn dOOa on Ua • 
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Exercise D.6. (a) Verify that these formulas define I-forms and 2-forms on 
X. (b) Verify that d is linear, i.e., d(riwi + r2w2) = rld(wl) + r2d(w2) for real 
numbers rl and r2 and O-forms or I-forms WI and 002' (c) Verify that d(df) = O. 
(d) Show that for k = 0, I, and 2, a k-form for one atlas determines a k­
form for any other atlas, and that this is compatible with the definition of 
differential. 

There is also a wedge product /\ that takes two I-forms 00 and IL and 
produces a 2-form 00/\ IL. For an open set U in the plane, if 00 = fdx + gdy, 
and IL = hdx + kdy, for f, g, h, and k C(&'" functions on U, then 

w/\IL = (fdx+gdy)/\(hdx+kdy)=(f·k-g·h)dxdy. 

If 00 and IL are I-forms on X given on Ua by Wa and lLa, respectively, then 
00 /\ IL is the 2-form given on Ua by Wa /\ lLa, with Wa /\ lLa defined by the 
displayed formula. Iffis a function and 00 is a I-form (or 2-form), then/' 00 
(defined locally by fa' Wa) is a I-form (or 2-form). 

Exercise D.7. (a) Verify that W/\IL is a 2-form. (b) Verify the following 
properties of the wedge product: 

(i) 

for 001,002, and IL I-forms, andfl andf2 functions; 

(ii) IL/\W = -w/\IL 

for IL and 00 I-forms; and 

(iii) 

for f a function and IL a I-form. 

In fact, all the results of this appendix generalize from two to n dimen­
sions, leading to the notion of a smooth manifold of dimension n, a vector 
field on a manifold, the index of a vector field, an orientation of a manifold, 
k-forms on a manifold (0::::; k::::; n), with differential from k-forms to (k + 1)­
forms, wedge products of k-forms and I-forms being (k + I)-forms, with sim­
ilar properties. 



APPENDIX E 

Proof of Borsuk's Theorem 

This appendix contains a proof of Borsuk's theorem as stated in §23c. It 
assumes a knowledge of §23a and §23b. 

So far in this book we have considered chains 2:n;fj with integer coeffi­
cients n j • In fact, one can use coefficients in any abelian group G, and one 
gets chains Ck(X; G), cycles Zk(X; G), and boundaries Bk(X; G), so homol­
ogy groups Hk(X; G) = Zk(X; G)/Bk(X; G). All the formal properties proved 
about ordinary homology groups extend without change to these groups, and 
many of the calculations are similar. For example, the Mayer-Vietoris theo­
rem is true without change. 

It is often useful to look at coefficients in 71./p71., the integers modulo a 
prime p. In this case there is a natural homomorphism from each HiX) to 
Hk(X; 71./p71.,) obtained by reducing all coefficients modulo p. This gives 
homomorphisms 

These homomorphisms are isomorphisms if X is a sphere, as one sees by 
tracing through the Mayer-Vietoris argument computing the homology of a 
sphere. The following exercise shows that it is not always an isomorphism, 
however. 

Exercise E.1. (a) Show that the above map is an isomorphism if X is a 
compact oriented surface. (b) Show that, for X the real projective plane, or 
any compact surface, H2(X; 71./271.) = 71./271.. 

These homology groups are particularly useful when p = 2. In fact, every-

393 
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thing becomes a little easier, since one can ignore all signs entirely. Since 
these are the only ones we will consider here, we denote them by RkX: 

RkX = Hk(X; 1./21.). 

Similarly, we denote by C~ the chain complex C*(X;1./2l.). 
It follows from the isomorphism Hn(Sn)/2Hn(sn) == Rn(sn) that for any 

continuous map f: Sn~sn, the degree of f is odd if the homomorphism 
f*: Rn(sn) ~ Rn(sn) is not zero, and even if f* is zero. We denote the an-

tipodal map by 

T: Sn ~ So. 

Let 11": sn~ !RlIln be the two-sheeted covering map that identifies antipodal 
points. We will prove Borsuk's theorem by using the chain complex and 
homology of these spaces and maps with coefficients in 1./21.. For this we 
need a general lemma. 

Let 11": X ~ Y be any two-sheeted covering map, and let T: X ~ X be the 
map which interchanges the two points in 11" -I(p) for each P in Y. The cor­
responding map 11"*: C~ ~ C*Y of chain complexes is surjective. In fact, 
if f: Ik~ Y is a k-cube, there are exactly two k-cubes Al and A2 = To Al in 
X with 11" 0 Aj = f. This is proved exactly as we proved the lifting of hom­
otopies in § lIb. The mapping f 1-+ Al + A2 determines a homomorphism 
t*: C*Y~ C*X of chain complexes, called the transfer (see Problem 18.26). 
A chain is in the kernel of 11"* exactly when each cube To A occurs with the 
same coefficient as A. We therefore have an exact sequence of chain com­
plexes 

(E.2) 

This gives a long exact sequence in homology: 

Lemma E.3. (i) Lett X~X be a continuous map such thatfoT= Tof, and 
let g: Y~ Y be the map determined by the condition go 7T = 7T Of. Then the 
diagram 

0 -c*y ~CX * ~c*y -0 

g*! f.! g.! 

0 -C.Y ~C*X ~cy • -0 
commutes. 

(ii) Let t X ~ X be a continuous map such that fo T = f, and let g: Y ~ Y 
be the map determined by the condition g07T= 7T Of. Then the diagram 



Appendix E. Proof of Borsuk's Theorem 395 

0 -c*y ~ C*X ~ c*y -0 
01 f*l g*l 

0- c*y ~c*x ~ C*Y -0 
commutes. 

Proof. Both of these are straightforward from the definitions. The right squares 
commute by functoriality: g* 0 'IT * = (g 0 'IT)* = (fo 'IT)* = f* 0 'IT *. For the left 
squares, let f be a cube in Y, AI and A2 its two liftings, so 
f*t*[f] = [fo AI] + [fo A2]. In case (i), fo AI and fo A2 are the two liftings 
of go f, so t*g*[f] = [fo Ad + [fo A2], as required. In case (ii), 
foA 2 = foToA I = foAl' so f*t*[f] = 2[foAd = o. 0 

It follows from this lemma that the corresponding maps between the long 
exact homology sequences commute. We apply this now to X = sn, Y = IRpn, 
'IT: X ~ Y the covering, and T the antipodal map. The long exact sequence 
arising from (E.2) takes the form 

o - HnY ~ fi.x ~ HnY ~ fin_IY - 0 
- a-

0- Hn_IY - Hn_2Y - 0 - ... 

- a - t* - 1t -
- 0 - HIY - HoY ~ HoX ~ HoY -- O. 

Since HnX= 7L127L, we must have HnY¥-O, so t*: HnY~HnX is an iso­
morphism. Hence 'IT*:HnX~HnY is zero, so a:HnY~Hn-IY is an iso­
morphism. Continuing, we see that a: H;Y~H;_IY is ari isomorphism for 
all i = I, ... , n. In particular, H;Y = 7L127L for i = 0, ... , n. 

Now supposef: S"~Sn is a map withfoT= Tof. Borsuk's theorem (Theorem 
23.24(a» states that the degree of f is odd, which is equivalent to saying 
thatf*: HnX~HnX is an isomorphism. Applying Lemma E.3(i), we have 
commuting diagrams 

fiY~HX 
n == 11 

g* 1 f* 1 
- t* -
HnY~ HnX , 

the right diagrams valid for i = I, ... , n. Since g*: HoY ~ Ho Y is an iso­
morphism, it follows from the right squares and induction on i that the ho­
momorphism g*:H;Y~H;Y is an isomorphism for every i=O, ... , n. 
Then the left square implies thatf*: HnX ~ HnX is an isomorphism as well, 
and this completes the proof. 

Similarly, iff: sn~sn is a map withfoT= f, we have by (ii) of the lemma 
a commutative diagram 
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iif~HX 

01 = 1·1 
Hnf ~ .. H~. 

This implies that f*: Iinx ~ Iinx is zero, which means that f has even de­
gree, and completes the proof of Theorem 23.24. 0 

The constructions of this section are part of a general development of P. A. 
Smith to study spaces equipped with periodic transformations like T. For a 
proof of Borsuk's theorem using simplicial approximations, see Armstrong 
(1983). For a proof using differential topology, see Guillemin and Pollack 
(1974). 



Hints and Answers 

Hints and/or answers are given for some of the exercises and problems, 
especially those used in the text, or those that are hard. 

0.1. Hint: The answer depends only on the numbers of edges that emanate 
from each vertex. What happens to these numbers when you travel, erasing 
the edges as you travel over them? When do you get stuck at a vertex? 

Answer: There is always an even number of vertices such that the number 
of edges emanating from the vertex is odd (if an edge has both ends at a 
vertex, it counts twice). If this number is greater than 2, the graph cannot 
be traced. If the number is 2, it can be traced, but only by starting at one 
of these, and (necessarily) ending at the other. If the number is 0, you can 
start anywhere, and will end at where you start. To see that one can do it 
under these conditions, one way is to make any trip, starting at an odd vertex 
if there are two such, continuing until you get stuck. Then make another 
trip, but adding a side trip along untraveled roads, until you (necessarily) 
get back to the old route at the same point. Each trip becomes longer, until 
the whole is traced. 

0.2. See Chapter 8. 

1.6. All but (vi). 

1. 7 . Yes. Find such a function by integrating. 

1.9. For the challenge, if P is in the closure of the points one can connect 
to Po by such an arc, take a disk D around Pin U, take an are from Po to 

397 
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a point inside D, and look at the first time the arc hits the boundary of D 
with inward pointing tangent; splice on to this arc (see §B2 for similar con­
structions) to get to any point inside D. 

I. 13. See Chapter 9 for more general results. 

1.20. For the challenge, use the law of cosines. 

2.3. Show that the derivative of {}(t) must be 

-y(t)x'(t) + x(t)y'(t) 

X(t)2 + y(t)2 

Or show that two such functions differ by a multiple of 271', which must be 
o by continuity. 

2.9. Consider neighborhoods given in polar coordinates by {}, < {} < {}2 and 
r, <r<r2, with {}2-{}' <271'. 

2.13. See §B2 for the construction of such functions. 

2.19. For formulas see Chapter 12, and use Problem 2.13. 

2.22. Either argue directly, as in Appendix B, or use polar coordinates to 
map a rectangle onto the disk, and integrate the pull-back of the I-form as 
in the first proof of Proposition 2.16. 

2.24. Apply Green's formula (i) with g = f. 

2.25. Hint: Apply Green's formula (ii), where R is the region inside the 
disk and outside a small disk around the point, with g of the form a + b log(r), 
where r is the distance from the center of the disk. Pass to the limit as the 
radius of the small disk approaches O. 

3.4. Use the definition. Choices of subdivision and sector Vi and {}i for "Y 
and P determine the same subdivision for "Y + v, choices Vi + v for sectors, 
and translated angle functions, so that the changes in angle along each piece 
are the same for each. 

3.5. Use Exercise 2.9. See §llb for a generalization. 

3.7. See Chapter 12 for formulas. 

3.10. Apply the Lebesgue lemma to "y0Cf', to obtain a subdivision 
a' s; to'S; ... S; tn' = b' , such that "Y ° Cf' maps each subinterval into a sector. 

3.13. In the starshaped case, show that any closed path is homotopic to a 
constant path, and use Exercise 3.7. 

3.15. Use Problem 3.14 to construct a homotopy between the lifted paths. 

3.22. Use Problem 3.21 and Problem 3.14. 

3.23. Use a homotopy H(P x s) = (l - s)F(P) ± sP, which is a homotopy 
from F to the mapping P~P or to P~ -P. 

3.25. Part (d) uses Problem 3.22. 
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3.27. The degree of OoF is the sum of the degrees of F and O. For the 
proof, use Problem 3.26. 

3.29. Use the fact that the group GL2(1R) of two by two invertible matrices 
has two connected components, cf. Appendix C. 

3.30. Deform from the map to its linear approximation. See §D1. 

3.31. See § 19a for the local structure of general analytic mappings. 

3.32. Compute the change in angle of F along the arcs between points in 
r1(p'). 

4.6. If r were a retraction, F(P) = -r(P) would have no fixed point. 

4.7. Given a mapping f of Y to itself, consider the composite i of 0 r, where 
i is the inclusion of Y in X and r is the retract. 

4.8. (i). Note that (ii) and (iv) are homeomorphic. 

4.11. Compare the restriction of f to Sl with the identity mapping and the 
antipodal mapping, using the dog-on-a-Ieash theorem. Or look at fixed points 
of x~ ±f(x)/lf(x)l. 

4.12. The unit vectors in the octant form a space homeomorphic to a disk, 
and, if no such vector is mapped to zero, then F(P)/IIF(P)1i must have a 
fixed point. 

4.13. Use the preceding exercise. 

4.14. Look at the mapping P ~ f(P) - P, and use Exercise 4.11. 

4.15. Show thatfis homotopic to the antipodal map. 

4.17. See Problem 3.23. 

4.18. MapD"" to S""by a formula (aO,al, .. . )~(t,aO,al' .. . ). 

4.24. See the proof of Lemma 4.20. 

4.27. See Lemma 4.21. 

4.30. If not, do a spherical projection from a point not in the image. 

4.31. Iff(P)~P for all P,fis homotopic to the antipodal map, while if 
f(P) ~ p* for all P, f is homotopic to the identity map. 

4.38. Choose three arcs covering the circle without antipodal points, and 
look at their inverse images in the sphere. 

4.39. Look atAUB*, BUC*, and CUA*. 

4.40. Tennis anyone? 

5.4. If A is unbounded, the same proof shows that Wp is exact. If A is bounded, 
the integral of Wp around a large circle is nonzero. 
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5.13. Take U = 1R2 \ A, V = 1R2 \ B, and show that the image of & and the 
kernel of & each have dimension at least 1. 

5.14. Divide the rectangle in half, with the intersection an interval. Argue 
as in Theorem 5.1, and use the fact (*) to know about the first cohomology 
groups of the complements. 

5.16. Write X = A U B, with A and B homeomorphic to circles, and A n B 
a point or homeomorphic to an interval. 

5.21. Induct on e. Let A be the union of the vertices and e - I ofthe edges, 
and let B be the other (closed) edge, and set U = 1R2 \ A and V = 1R2 \ B, 
arguing separately the cases when B has one endpoint or two, and, when 
two, whether they are in the same component of A or not. 

5.22. Analyze the connected components of the complement as the edges 
are added. 

5.23. Take V= 1R2\X, so UU V= 1R2 and un V= U\X. 

5.~.~ Q 
5.26. Look at the image of a circle around the band, and the image of its 
complement. 

5.27. For example, the situation should look locally-via a homeomor­
phism-like the two axes crossing at the origin. 

5.28. Both follow from Corollary 5.18. 

6.5. If 'Y=~nl'fi' then 'Y=~ni(ari)' where C(t,s)=(1-s)·'Y;(t)+s·po, 
where Po is the point with respect to which U is starshaped. 

6.12. Use Theorem 6.11. See §9a for generalizations. 

6.14. If r: [0,1] x [0, 1] - U, the boundary of Fo r is F *(ar). 

6.17. See Proposition 7.5 and Problem 7.8. 

6.18. See Problem 3.23. 

6.24. (b) A point on a circle is a retract but not a deformation retract. 

6.25. Use Exercise 6.20 and Proposition 6.23 to show that r * is the inverse 
isomorphism to i*. 

6.27. If P' is a point not in X', use Tietze to extend F to a continuous 
mapping from an open neighborhood U of X to 1R2 \ {P'}. Apply Theorem 
6.11. 
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6.28. The converse is false! For a counterexample, see Problem 13.28. 

7.2. Consider (!R(x + iy)", ~(x + iyn and (!R(x + iy)", - ~(x + iy)"), where 
!R and ~ denote the real and imaginary parts. 

7.3. If 'Y is a path around P as usual, H°'Y gives a homotopy in Ilf\{O} 
from Vo°'Y to VI°'Y. 

7.4. In the first case, consider the homotopy 

H(t, s) = s· V('Yr(t)) + (1 - s)· p('Ylt))· V('Yr(t)) , 

o S t s 1, 0 s s s 1, where 'Y r is a path around a small circle around P. For 
the second, compare V and - V. 

7.8. If an infinite number of points Pj in Z have W('Y,Pj ) =F 0, such points 
lie in a bounded set, so they must have a limit point P. Since P cannot be 
in U, W('Y,P) = 0, and this contradicts Proposition 6.8. 

7.9. Recall thatfhas a local maximum (resp. minimum) at P if the Hessian 
is positive and (azJ/a~)(p) < 0 (resp. (a1ja~)(p) > 0); and f has a saddle 
point at P if the Hessian is negative. Use Problem 3.30. 

7.13. Show that 

(~*V)(x, y) = [Y~~ /::x2l [:: :~~: ~n ' 
with (a, b) a nonzero vector, and where p(x,y) and q(x,y) approach zero as 
Ixl and Iyl approach infinity. Restrict to a large circle, and do a homotopy 

(see Appendix D), to deform [:::~~:~n first to [:], and then to [b]. 
7.16. See the first picture in this section. 

7.17. Look at Yep) = f(P) - U(P)· P)P. 

8.4. Thinking of a horizontal doughnut with g holes, put a source on top 
between each of the holes, and a sink directly under each source. 

8.5. #peaks + #valleys - #passes = 2 - 2g. 

8.6. No. 

8.lD. Triangulate each of the polygons by putting a new vertex in its center. 

8.12. Lift the vector field or triangulation to S2. 

8.13. O. 

8.14. (b) A Klein bottle. 

8.15. -1. 



402 Hints and Answers 

9.6. There is no homomorphism from 7Ln' onto 7L n if n > n', see Exercise 
C.I4. 

9.7. For (a), take a small circle "Ij around i for each iE N, and show that 
any closed I-chain is homologous to a finite sum 2,n j"lj. The answer is the 
same for (b), since the spaces are homeomorphic, for example by the map 
z~ I/z from C \ {O} to C \ {O}. 

9.9. The fact that the map is one-to-one follows from Theorem 6.11. For 
surjectivity, one can produce I-cycles with arbitrary winding numbers around 
each K j by Lemma 9.1, so the essential point is to show that the map from 
HI(V \ K) to HI V is surjective. Take a grid so that no rectangle meets a point 
of K and a point not in U. If "I is a I-cycle on V, we know "I is homologous 
to a sum of the form 2,niaRi' Let "I' = 2,R;nK=OniaRi . Then "I' is a I-cycle on 
V \ K that is homologous to "I on V. (See also Exercise 10.14.) 

9.14. Consider the path . See Exercise 11.14. 

9.15. Use Corollary 9.12. If each "Ij is 't:"', so are all the constructions made 
in the proof that "I is a boundary. 

9.16. Show that 1R2 \ V is connected. Note that if V is any connected com­
ponent of [R2 \ X, then V C V U X and V meets X, so the union of any such 
V with X is connected. 

9.17. For (a), take a subdivision and rectangles V; as in the definition, but 
with the additional properties that each side of each Vj is of length at most 
1, and the closure of V; is contained in V. Let OJ be the point in the center 
of Vj • Given a point to, and an E > 0, show that there is a 8 > 0 so that 

Ip(x, y, t) - p(x, y, to)1 < E/2n and Iq(x, y, t) - q(x, y, to) I < E/2n 

for It - tol < 8. For each such t, leth" be the function on Vj so that d(h,,) = w, 
on V; and such that h"(O;) = O. Use the construction of Proposition 1.12, 
with the fact that the integrals are taken over segments of length at most 112 
(see Exercise B.8) to show that Ih,,(p) - h"o(p)1 < E/2n for all P in Vi' and 
for all It - tol < 8. Deduce that for It - tol < 8, 

n 

2: ((hiPj) - h"o(P;)) - (h"cP j-,) - h"oCPj-,)) 
i=l 

:S 2n'(E/2n) = E. 

For (b), note that integral-valued locally constant functions are constant, and 
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they vanish if they are small. 

9.20. 53'IT. 
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9.21. Let Pi be any point in Ai' and set W = ~ ~iWPi' where wPi is the I-form 
(1/2'IT)wp;.il that measures change in angle around Pi. 

9.22. For (b), use the equation displayed after Corollary 9.19, with 
(m\> m2) = (1,0) and (0, 1). 

9.23. Approximate u(a + Ax + illy) - u(a) by (aulax)(a)Ax + (aulay)(a) lly, 
and similarly for v. 

9.25. For (b), take 'Y. a circle of radius E around the singUlarity, and let E 

approach O. 

9.28. See Problem 7.8. 

9.31. See Exercise 7.4. 

9.35. Use the dog-on-a-Ieash theorem (Theorem 3.11). 

10.5. On a path-connected space, O-cycles of degree zero are boundaries. 

10.14. Apply Mayer-Vietoris, with V = [R2 \ K. Use Corollary 9.4 to cal­
culate HIV. 

10.18. Identify S2 with [R2U{oo}. Suppose X\Xnu={p,Q}, with P and 
Q in [R2. Let V = S2 \ X. Use Mayer-Vietoris to see that un V is discon­
nected exactly when H 1U_H1(S2\{p,Q}) is zero, or equivalently, when 
W( 'Y, P) = W( 'Y, Q) for all I-cycles 'Y on U. 

10.19. See Problem C.16. 

10.20. Use Corollary 9.4 to compute H1U, H1V, and H1(UUV); and com­
pute the kernel of a. For the last part, argue as in the proof of Theorem 5.11, 
using the inclusion of Ho(Un V) in Ho(U)(BHo(V) to show that if points Po 
and P I are in different connected components of U and V, then they are in 
different connected components of un V. 

10.21. Use Exercise 10.14 with MV(iii) and MV(iv). 

10.22. Apply Alexander's lemma, with the compact sets X and aD UB. 

10.23. If not, find points p. and Q. within distance lin that cannot be so 
joined, and apply the preceding problem to a limiting point P. 

10.24. Let E. = lin, and take corresponding 8. > 0 from the preceding 
problem. Take a sequence of points Q. in the same component as Q, with 
the distance from Q. to P at most 8./2. Connect Qn to Qn+1 by a path in a 
disk of radius En. Join these paths together, with the nth path defined on a 
subinterval of length I 12n . 

10.25. Use Problem 9.9 with MV(iii) and MV(iv). 
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10.28. Take V = [R2 \ K, and use the isomorphism described after Exercise 
9.21. 

10.30. If not, use grids to find a closed path 'Y in [R2 \ au that has different 
winding numbers about two points of au. Note that au c K. Since 'Y is 
connected and does not meet au = V \ U, 'Y must be contained in U or in 
[R2 \ V. If 'Y is contained in U, then'Y has the same winding number about 
all points in K, since K is connected and contained in [R2 \ U; this contradicts 
the fact that au c K. If 'Y does not meet V, since V is connected, the winding 
number of 'Y is constant around points in V, contracting the fact that 
aucV. 

If K is closed and connected, the same is true. To see it, let K be the 
closure of Kin S2 = [R2 U {oo}, let P be a point in U, and apply the preceding 
case to KCS2\{P}=R2. 

11.1. For (ii) you can use the identity exp(x + iy) = eX(cos(y) + i sin(y». 

11.4. Show that the set in X where the cardinality is n is open and closed. 

11.10. Write an open rectangle as an increasing union of closed rectangles. 

11.11. For (a), when X is locally connected, the evenly covered neighbor­
hoods N can be taken to be connected, and if p-I(N) is a disjoint union of 
open sets Na , each mapping homeomorphically to N, then these Na are the 
connected components of p-I(N). (b) follows, since Y' will be a union of 
those Na that it meets. 

11.13. For the triangulation, use the lifting propositions to lift any trian­
gulation of S to a triangulation of S'. 

11.15. For (b), for n E l. and (r, -l1) in the right half plane, the action is 
given by n' (r, -l1) = (r, -l1 + 2'ITn). 

11.22. The map from X x G to Y by x x g~ g' sex) is a G-isomorphism. 

11.23. Use the preceding exercise. 

11.24. It's enough to look where the covering is trivial, as in the proof of 
Lemma 11.5. 

11.28. Given y in Y, take disjoint neighborhoods Ug of g' y, one for each 
g in G, and let V be the intersection of the open sets g -I . U g • 

11.39. Given such an automorphism IP of S, define an automorphism of the 
covering by the formula y * 'Y ~ lP(y) * 'Y for any yES and any path 'Y starting 
at x. Show that this is independent of choices. 
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12.1. Use the same fonnulas as in the preceding displays, but for the second 
variable s. 

12.3. For (a), 

H(t, s) T(4t-s-l), 

f.L (4t ; ~ ~ 2), 1/4(2 + s) ~ t ~ 1. 

12.5. To compute 'Tr1(SI, (1,0», see Problem 3.14, which is an easy con­
sequence of the propositions in Chapter 11. 

12.6. Use the homotopy H(v, s) = sx + (1 - s)v. 

12.8. Cut the path into a finite number pieces that map into hemispheres, 
say, and replace each piece by a homotopic arc with the same endpoints, 
for example an arc along a great circle. 

12.10. 

12.12. 

If a and T are loops at e, consider the homotopy H(t, s) = a(t) . T(S). 

Map (t,s) to 

{ 

(0,1 - 2t), 

(4t+2S-2 s) 
3s + 1 ' , 112(1 - s) ~ t ~ 1/4(S + 3), 

(1, 4t - 3), 

Follow this by h to achieve the homotopy. 

12.15. (i), (ii), (iv), and (v) are equivalent; (iii), (vi), and (viii) are equiv­
alent; (vii) and (ix) are equivalent. 

12.18. For Sl, let H«xi ,X2) x s) = rotation by s· 'Tr acting on (XI, X2). For 
larger n, use the same fonnulas for each successive pair of the n + 1 co­
ordinates on Sn C IRn+ I . 

12.20. Show that it has a circle SO(2) as a defonnation retract. 

13.10. Take xc 1R2 to be the union of the lines L(n) = {lin} x [0, I], for 
all positive integers n, and three lines L= [-1, 1] x {I}, M={-I} x [0, 1], 
and N = [-1,0] x {OJ. Let X be the point (0,0). Take two copies XI and X2 

of X, and denote by subscripts the corresponding lines and points in XI and 
X2• Take Y to be the disjoint union of XI and X2 , topologized as usual except 
near the points XI and X2. For a disk U of radius E < 1 about (0,0) in the 
plane, define a neighborhood U(Xi) in Xi by 

U(XI) = (NI n U) u U (L(n)1 n U) u U (L(nh n U), 
nodd neven 

U(X2) = (N2 n U) u U (L(n)2 n U)U U (L(n)1 n U) . 
nodd neven 
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This space Y is connected, and the natural map from Y to X is a covering 
map. 

13.12. The proof is exactly the same as for the theorem. 

13.17. By Corollary 13.16, the answer to (a) is 7L/n7L. For (b), the fun­
damental group is the group of translations of the plane described in Exercise 
11.25. The subgroup in (c) is generated by a and b2 • 

13.21. For (1), note that -y. ex is homotopic to (-y.~). (!~-l. ex). For (3), if 
-y. ex is homotopic to -y' .~, with ex and ~ paths in N from z to w, then ex. ~-l 
is homotopic to Ez in X, so -y is homotopic to -y. (ex· ~-l), so to (-y. ex). ~-l, 
so to (-y' . ~). ~-l, so to -y' . (~. ~-l), and so to -y'. 

13.22. Take Y to be the union of IR with a copy X. of a clamshell-but 
without its outer circle-attached at each point n in 7L C IR, and map Y to 
X by wrapping IR around the outer circle of X once between each integer. 
Take z~ Y to be a covering that is nontrivial over a different circle of each 
X •. 

13.27. For ¢;, write -y as a boundary on U, and apply r to both sides. 

13.28. Let -y be a path which, on [0,1/2] first goes around C1 counterclock­
wise, then C2 counterclockwise, then C1 clockwise, then C2 clockwise. On 
[1/2,3/4] it does the same but using C3 and C4, and so on, on intervals of 
length 1/2· using the circles C2n- 1 and C2n • For all k there are homomor­
phisms from the fundamental group to the free group Fk with k generators, 
obtained by using the first k circles (see Problem 13.25 or §14d). The image 
of [-y] in F 2. is a commutator of n elements, but not of fewer than n elements. 
So [-y] cannot be the commutator of any finite number of elements. 

13.29. (r,{})~log(r)+H}. 

14.5. If f and f' were two such groups, the universal property for each 
would give maps from f to f' and from f' to f, and the two composites 
f ~ f' ~ f and f' ~ f ~ f' would be the identity maps by the uniqueness 
of such homomorphisms. 

14.6. The subgroup of '1Tl(X,X) that is generated by these images has the 
same universal property. It can be proved directly by subdividing the paths. 

14.10. Take G = '1Tl(U, x) and then G = '1Tl(V, x). 

14.13. See Problem 13.25 for the uniqueness. 

14.15. If X' is X with an edge collapsed, map X' back to X as indicated: 
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a 

The map is the identity except on edges adjacent to the vertex the edge is 
collapsed to. Send this vertex to the midpoint of the collapsing edge, and 
send half of each edge adjacent to this vertex to half of the edge that was 
collapsed, and spread the other half over the full edge. Check that the two 
composites are homotopic to the identity maps on X and X' . 

14.17. For one point in a torus, the complement has a figure 8 as a defor­
mation retract. 

14.18. It is a free group on a countably infinite number of generators. Use 
Theorem 14. 11. 

14.19. The complement of an infinite discrete set in the plane is a covering 
space of the complement of a point in a torus. 

14.20. The sphere with two handles can be obtained by joining the com­
plements of disks in two tori. For another approach, see Chapter 17. 

15.17. See Problem 9.7. The answer is the same for (b), and (c), see Prob­
lem 14.18. 

15.19. See Chapter 24 for more general results. 

16.5. Show that the set defined this way is open and closed. 

16.6. With 00 = dfa on Va' trivialize the covering over Va, by mapping 
POl -1(Ua)~ Va X IR by taking a germfat P to P X (f(P).,.. fa(P». Check that 
ga~ = fa - fr, are transition functions for this covering. If 00' = 00 + dg, let 
fa' = fa + g, and one obtains the same transition functions. 

16.11. HOX ~ HO(X; IR) comes from the fact that a locally constant function 
is a function on X with coboundary zero; H1X ~ Hl(X; IR) comes from the 
fact that a closed I-form defines by integration a function on paths that is 
a l-cocycle. It follows from Proposition 16.10 and Theorem 15.11 (and 
Exercise 15.18) that these maps are isomorphisms. 

16.12. Use the ideas of Lemma 10.2. (Caution: Proposition 16.10 and Mayer­
Vietoris for homology can be used directly for example when G = IR, but 
not in general.) See §24a for the general story. 

16.13. Since the given covering is locally isomorphic to the trivial G-cov-
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ering, it suffices to prove that PT is a trivial covering when the given cov­
ering is the trivial G-covering. If the given covering is the projection from 
the product X x G -+ X, there is a canonical mapping 

YT = «X x G) x T)/G -+ X x T 

determined by the map «x x g) x t)-x x g-I. t. To see that this is well 
defined on orbits, note that, for h in G, 

h· «x x g) x t) = «x x h· g) x h· t) 
- xX(hg)-lh·t = xXg-1.t. 

Check that this is a homeomorphism, with its inverse determined by sending 
x x t to «x x e) x t). 

16.14. For any y in Y and t in T, there is a unique element <I>(y, t) in T' so 
that 

f«y x t» = (y x <I>(y, t» for all y in Y and t in T. 

For fixed t, the mapping y - <I>(y, t) from Y to T' is locally constant, since 
it is constant on each piece of p-I(N), for N an evenly covered set in X. 
But since Y is connected, a locally constant function is constant; therefore 
<I>(y, t) = Ip(t) for some function Ip: T -+ T'. To see that Ip is a map of G-sets, 
calculate: 

(y x Ip(g' t» = f«y x g' t» = f«g-I . y x t» 
= (g-l·yXIp(t» = (yXg'lp(t», 

from which the equation Ip(g' t) = g . <p(t) follows. By the definition, the 
mapping from YT to YT' determined by Ip is f. 

16.17. There is a mapping from Y /H to (Y x G /H)/G that takes the H-orbit 
of a point y to the G-orbit of the point y x H. The inverse mapping from 
(Y x G /H)/G-+ Y /H is given by sending the G-orbit of y x gH to the H­
orbit of g-I . y. 

16.22. By Exercise 16.14, an isomorphism f Y(I/II)-+ Y(1/I2) is given by a 
map Ip: G' -+ G' of G-sets. So 

(i) f«z x g'» = (z X Ip(g'» for all z E Y and g' E G'; and 
(ii) Ip(g' '1/I1(g-I» = Ip(g') 'I/Iz(g-I) for all g' E G' and g E G. 

Since f preserves base points, 

f«y x e» = (y X Ip(e» = (y x e), 

so we must have Ip(e) = e. Since f is a mapping of G'-coverings, we must 
have 

f«z x g'» = f(g' . (z x e» = g' -j«z x e» = g'. (z X e) = (z X g'). 

Therefore Ip(g') = g' for all g', and applying (ii) with g' = e we see that 
I/II(g -I) = 1/12(g-l) for all g in G, so 1/11 = 1/12' 
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16.24. Over Va, where p-I(Va) == Va X G, identify (p-I(Va) X T)/G with 
the product Va X T by (x X g X t)~x X g-I. t. The transition from Va X T 
to V~ X T is 

x X t ~ (x X eXt) ~ (x X gaf\(x)· eXt) ~ x X gafl(X)-1 . t = x X gfla(x)· t. 

16.25. Consider first the case of a trivial covering Y = X X G. Then 

(Y X G')/G = «X X G) X G')/G ~ X X G', x X g X g' ~ x X g' .1\J(g). 

Choose trivializations p - \ Va) == VaX G ofthe covering p, so thatthe resulting 
transitions are given by the cocycle {gafl}. Identify p,-I(Va) with Va X G' by 
the displayed isomorphism. The transition from Va X G' to VfI X G' (over 
van VfI) is 

x X g' ~ (x X e X g') ~ (x X gaj3(x) . e X g') ~ x X g' ·1\J(gaj3(x» . 

16.28. The transition functions are given by the Jacobian determinants of 
the change of coordinate mappings. 

17.10. 

17.12. The fundamental group is the free group with 2g + n generators 
ai' b l , ••• , ag , bg , d l , ••• , dn , divided by the least normal subgroup 
containing 

b -I b -I b -I b -I d d cg = al· I· al . I •.... ag • g. ag • g • I····· n· 

The result is a free group on 2g + n - 1 generators, if n 2: 1 (since one can 
write dn in terms of the other generators). 

18.3. These integers are determined by writing the class of 'Y in terms of 
the basis: b] = ~f=l(m;[a;] + n;[b;]). 
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18.4. If {I\J~'} is another partition of unity subordinate to another atlas of 
charts, 

The linearity is immediate from the definitions. For the opposite orientation, 
one can use the same charts but with the x and y axes interchanged, so in 
local coordinates the form v is expressed as -v"dydx, and all the integrals 
get replaced by their negatives. 

18.7. Since the I-forms a j and I3j form a basis for H'X, it suffices to prove 
these formulas when w is one of the I-forms aj or I3j. Lemmas 18.1 and 
18.6 imply these formulas. For example, (aj' a j) and faj aj are both 0, as 
are (l3j , I3j) and h I3j, and (aj , 13;) and faj I3j are both 1 if i = j, and ° oth­
erwise. Finally, (l3j ,aj) = -(aj,l3j), and -(aj,l3j) and fbja j are both -1 if 
i = j and ° otherwise. 

18.8. By linearity, it is enough to do it for f..l = a j and f..l = 13;, and it then 
follows from Exercise 18.7 and Lemma 18.1. 

18.11. See Exercise 18.7 for (a). 

18.12. Changing the aj and hj if necessary, one can assume they cross the 
annulus transversally. Calculate for f..l = a j and I3j as above. 

18.14. Use Problem 18.12. 

18.15. It suffices to show that another choice of differentiable structure gives 
the same intersection numbers for pairs taken from basis elements aj and hj • 

18.20. Use a partition of unity, as in Lemma 5.5. 

18.22. If H2U = ° and H2V = 0, it follows from this and the Mayer-Vietoris 
sequence in § 16 that H2( U U V) = 0. Use Exercise 18. 18 and the fact that X 
can be built from rectangles, see Lemma 24.10. 

18.25. One can realize the surface by removing h disks from a sphere, and 
gluing in h Moebius bands. Apply Mayer-Vietoris. 

18.26. IfJis a finite covering, and g is a function on Y, defineJ*(g) to be 
the function whose value at x is the sum of the values of g at the points of 
J-'(x). A similar definition works for forms. 

19.1. f'(z) = Ux + ivx = Vy - iuy, and the Jacobian determinant is uxvy - vxuy-

19.4. Apply Riemann's theorem on removable singularities (Exercise 9.25). 

19.6. For (d), multiply the function by a suitable P2(Z)/P,(z) so that the 
result has no poles, so is constant. 
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19.8. This follows from the fact that the map Z ~ z· from D to D is proper, 
and the fact that only finitely many points are added. 

19.17. (b) If A·(Z+b')CZ+b, A'T'==aT+b, A·I ==CT+d; the de­
terminant is ± 1 exactly when A' (Z + b') == Z + b, and it is positive if T 
and T' are both in the upper half plane. 

20.5. To prove that C is a Riemann surface near such a point, show that 
one or the other projection to an axis is a local isomorphism. 

20.6. The genus in each case is: (i) (m - 2)/2 if m is even, (m - 1)/2 if m 
is odd; (ii) 0; (iii) 4; (iv) 1; and (v) (m - I)(m - 2)/2. 

20.7. (c) With the notation of Exercise 19.12, the covering is given by 
assigning each (Ij to the unique transposition (l 2). 

20.12. The assumptions in (ii) guarantee that X has n distinct points over 
00, all therefore with ramification index 1. To see this, set z' == I/z and w' = w/z; 
they satisfy an equation G(z', w') = };7=ob;(z')(W,)"-1 = 0, where 
bj(z') = (z'iall/z') is a polynomial in z' with constant term Aj; the n roots 
to the equation };7=o Aj r i = 0 give n points on X over 00. 

Consider the zeros and poles of the meromorphic function h. To see what 
happens at the points over 00, make the change of coordinates as above. A 
calculation shows that h = (z,)I-nGw'(z', w'), so h must have pole of order 
n - 1 at each of these n points. At the other points of X, i.e., the points of 
C, h has no poles, so by Corollary 19.5 the sum of the orders of zeros of 
h at the points of C must be n(n - 1). By Exercise 20.9, this sum is the 
sum of e(P) - lover all ramification points of the mapping z: X ~ S2. Apply 
Riemann-Hurwitz to prove (c). 

The space of polynomials of degree at most n - 3 in Z and W has a basis 
the monomials Zi Wi with i + j ~ n - 3, and the number of these is 

(n-2)+(n-3)+ ... +2+ 1 = (n-I)(n-2)/2. 

If we verify that g' dz/h is a holomorphic I-form for each g = ZiWi , it fol­
lows that we have produced gx holomorphic I-forms, showing at once that 
these are all of the holomorphic I-forms, and that their dimension is gx. At 
the points in C, the form dz/h is holomorphic, as follows from the equation 

o = d(F(z,w» = F.(z,w)dz+Fw(z,w)dw, 

so dz/h = -dw/F.(z, w), and one of the denominators is nonzero at each 
point of C. At infinity, since dz = -(z,)-2dz', 

.. dz 
z'w1--­

Fw(z, w) 
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from which we see that these I-forms are also holomorphic at points over 
00. 

20.13. The proof is essentially the same, except that Fw(z, w) vanishes at 
the 28 points of X lying over the nodes, as well as at the branch points. 
Note that the space of polynomials of degree at most n - 3 vanishing at 8 
points always has dimension at least (n - l)(n - 2)/2 - 8, so the construc­
tion produces at least gx independent holomorphic I-forms. But since 
dim(OI,o) $ g, the inequalities are equalities-which shows, in fact, that 
conditions to vanish at the nodes are all independent. 

20.16. Compare the sum of the orders of f*oo with those of 00, for 00 a 
meromorphic I-form on y, 

20.17. See Exercise 9.26. 

20.19. For (a), since the residue is linear, it is enough to prove it when 
00 = (z - a)m dz, a E C, mE 7L. (b) can be reduced to a local calculation, over 
a disk in S2, where one has explicit formulas for the map z. 

20.24. The point is that, up to periods, integrating from P to Q and then 
from Q to R is the same as integrating from P to R, 

21.2. Write E = D + QI + ... + Q, and apply Lemma 21.1 r times. 

21.13. Define the adele f to be /; at Pi and 0 elsewhere. Take D of large 
degree so that M + R(D) = R, and with ordp,(D) 2: mi for all i. There is there­
fore anfin M so thatf-f is in R(D). 

21.20, For (a), if points PI"'" Pk have been found so that 
dim(O(PI + ... + Pk» = g - k, and k<g, take any nonzero 00 in 
O(PI + .. , + Pk), and let PHI be any point which is not a zero of w. For 
(b), change the last Pg to be a zero of 00'= 0 in O(PI + ... + Pg-I)' For 
points as in (b), Riemann-Roch implies that dim(L(PI + ... + Pg» 2: 2, so 
there is a nonconstant function with at most g poles. 

21.21. Multiplying <p by a scalar, we may arrange so the residues of <p at 
P and Q are as stated. This <p is unique up to adding a holomorphic oo. Take 
aj' bj , ooj as in §20d, with the aj and bj not passing through P or Q. Use 
Corollary 20.22 to show that there are unique complex numbers Aj so that 
the integral of <p - ~Ajooj over the cycles ak and bk are all purely imaginary. 

21.22, Take <p as in the preceding exercise, and take u to be an integral of 
the real part of <po 

21.23, An element in O( -2P) that is not in 0(0) must have a double pole, 
since it cannot have a residue at P. Multiply by a scalar to get <p + dz/z2 

holomorphic near P, change <p by a holomorphic I-form to get all its periods 
purely imaginary, and integrate the real part of <p to get u. 

21.24. Consider the sequence C=L(O)CL(PI)CL(PI +P2)C . .. ,with 
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the dimensions going up by ° or 1 at each step, reaching dimension g when 
k=2g-1. 

21.25. Apply Riemann-Roch, with E = K - D. 

21.27. The holomorphic differentials have the form [(a + bz + cw)/w] dz, 
with a, b, c E C. Check that no such form vanishes to order 2 at any point 
ofX. 

22.1. See the proof of Green's theorem in Appendix B. For the correct 
signs, see §23a. 

22.2. Extend the definition of integral over continuous paths as in the plane, 
and use the same arguments as in the planar case. 

22.3. 4'Tr. 

22.4. If F: S2~1R3\{O}, define W(F,O) to be (l/4'Tr)IIForW. 

22.6. Use Van Kampen, with one open set a ball around the missing point. 

22.7. A homotopy is H«z, w) x s) = (sz, Yl- ilzI21:1). 

22.9. To show the map is surjective, if (z, w) is in K, let z' = -z/a and 
w' = w/b, and verify that (Z,)3 = (W,)2 and Iz'l = Iw'l = 1. 

22.11. For example, with p(t) = 1 - t, one may take 

A = If2(_p2 + Y 4 + 4p3 + p4) and IL = VA=P. 
22.13. The generators for the fundamental groups of A \ K and B \ K are the 
circles around the middles of the solid tori. The generator for the funda­
mental group of T \ K is a path as indicated: 

To appeal to Van Kampen, A and B must be replaced by open neighborhoods 
of which they are retracts. 
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22.14. For (a), construct a mapping from [0, It to Sk that maps the bound­
ary to So, and is a homeomorphism from the interior of the cube to the 
complement of so. For (d), show that a map from Sk to sn, with k < n, is 
homotopic to one that misses the south pole, say by triangulating Sk into 
small simplices, and approximating the map by a "simplicial" map. See, 
e.g., Hilton (1961). 

22.16. Find homotopies that stretch and slide between the maps indicated 
in the diagram: 

r x x 

r A r x A x x x 

x x A 

x x r 

x x x A x r A r 

A x x 

For example, the second homotopy maps (t l , ••• , tk , s) to 

{
f<3tl' (3t2 - 2s)/(3 - 2s), t3 , ••• ,tk), O:s tl :s 1/3 , 2s/3:S t2 :S 1, 
A(3tl - 1, 3t2/(3 - 2s), t3 , ••• ,tk), 213:S tl :s 1,0:s tl :s 1 - 2s/3, 
x, otherwise. 

The third slides the squares around clockwise. 

22.22. Details can be found in many texts, e.g., Bott and Tu (1980). 

22.23. The form is closed by calculation, and it is not exact by Stokes theo­
rem, since its integral over Sn-I is not zero. 

22.27. See Bott and Tu (1980). 

23.1. This is formal, using the identities 

for i<j, 

and s and s' each taking values 0 and 1. The signs cancel because of the 
shift in subscript from j to j - 1. 

23.5. Check that (a? - a!) oS = So (a? - a!). 
23.15. Induct on p, and use Mayer-Vietoris for U = VI U ... U Up-I and 
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V= Vp- Note that vn V= (VI n V) u ... U (Vp _ 1 n V), so the inductive 
hypotheses imply to V, V, and V n V. 

23.17. For (d), argue by induction, using Mayer-Vietoris. If g: S"-I_S"-I 
has degree d, show thatf: S"_Sn given by the formula 

f(XI, ... ,Xn+l) = (g(XI' ... ,xn),X"+I) 

also has degree d. 

23.19. For (c), use Problem C.3 and the n-dimensional version of Lemma 
B.9; see the proof of Claim D.3. 

23.22. Induct on n, comparing the action of the antipodal map with the 
Mayer-Vietoris isomorphism. 

23.23. For (a), such a vector field gives a mapf: s"_sn that has no point 
P mapped to P or to - P. Such a map is homotopic to the identity and to 
the antipodal map. Use the preceding problem. For (b), consider the map­
ping (XI,X2," . ,Xn+I)-(X2,-XI,'" ,xn+l>-xn), 

23.26. For (a), regard SmCS", and note that a mapf: Sn_Sn that is not 
surjective has degree zero. The other proofs are essentially the same as in 
Chapter 4. 

23.27. In the situation of (a), there is a homotopy from f to a map g to 
which Theorem 23.24 applies, given by homotopic to the map g given by 

f(P) - sf(P*) 

H(P x s) = Ilf(P) - sf(p*)II' 

For (b) show similarly thatfis homotopic to a map g with g(P*) = g(P) for 
all P. (c) Any automorphism g without fixed points has degree - 1, so if g 
and h are nontrivial automorphisms, since g . h has degree 1, g . h must be 
the identity. 

23.28. Lift to a map from sn to sn and apply Problem 23.27. 

23.31. If m=n, HMmxs") is Z for k=O and k=n+m, and ZEeZ if 
k = n, and 0 for other k. If m ¥- n, the answer is Z for k = 0, m, n, and 
m + n, and 0 for other k. For the proof, induct on n, using sm x V and 
Sm x V, with V and V as before. 

23.36. Identify ~n with the complement of a point Pin sn, and use Mayer­
Vietoris for this open set and a small neighborhood of P. 

23.37. See Proposition 5.17 and Corollary 5.18. 

23.39. Cut the band in half: 
exact sequence 

. Look at the 
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and the maps to the terms in the corresponding sequence with A and B re­
placed by Any and B n Y, and X replaced by Y. 

23.41. Use n-dimensional grids, and generalize the arguments of Chapters 
6 and 9. 

2..1.5. The fact that C" is free abelian means that one can find a subgroup 
C" of C that maps isomorphically onto C", and then C is the direct sum of 
E" and the image of C'; and Hom( - ,G) preserves direct sums. 

24.7. This amounts to an identity on [k, which is proved just as in the case 
of Green's theorem for a rectangle by a calculation using Fubini's theorem, 
as in Proposition B.6. 

24.9. This is the higher-dimensional version ofreparametrization for paths. 
Here, for any k-cube r, SoA(r) - r = aA, where 

A(s, t l , • •• ,tk) = r(s '1X(2t l ) + (1 - s)· t l , • •• ,s '1X(2tk) + (1 - s)· tk), 

noting that the other terms in the boundary are degenerate. Defining Sp and 
Rp by the same formulas as in §23b, one calculates that 

SP-l = aoRp+Rpoa+(SoA-J)oSp, 

and the rest of the proof is the same as before. 

24.14. This is clear except where the coboundary and dual of the boundary 
are involved. Let W = WI - W2 be a closed (k - I)-form representing a class 
[w] in H"-I(U n V), with WI and W2 (k - I)-forms on U and V, and let z = CI + C2 

represent a class [z] in lI';(U U V), where CI and C2 are chains on U and V 
respectively. Then 

/)([w))([z)) = L dWI + Ldw2 = L. WI + L W2 = [w](a([z)). 

24.15. See Problem 23.41. 

24.16. Use Mayer-Vietoris and induct on the number of open sets in the 
cover. 

24.21. Set (p*w)(x) = W(YI) + W(Y2) where p -I(X) = {YI ,Y2}' For (c), note 
that Ix p*w = 0 for any n-form W with compact support on X. 

24.23. For (a), use HkX:::= (Hn-kX)* :::= «HkX)*)*, and the general fact that 
if V is a vector space isomorphic to (V*)* , then V must be finite dimensional. 
For (b), use the linear algebra fact that a finite-dimensional vector space 
with a nondegenerate skew-symmetric form must be even dimensional. 

24.24. Since the spaces are finite dimensional, H~-PX is isomorphic to (HPX) * . 

24.25. This follows from the fact that all cubes r have compact image in 
X. (Compare the special case used in the argument in §5c.) 
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24.26. (b) follows from the definitions, just as for homology. 

24.27. Use Exercise 24.S. 

417 

24.36. Consider for each n the exact sequences O~Zn~Cn~Bn-1 ~ 0 
and O~Bn~Zn~Hn~O, and use Problem C.16. 

24.37. For (c), fix an ordering on N(au). For each vertex v, choose a point 
Cv in Uv , regarded as a O-chain on Uv • If (vo, VI) is a I-simplex, then, since 
Uvo U UV\ is connected, there is a path from Vo to VI in Uvo U UV\' which de­
termines a I-chain C(VO.VI). Construct, by induction on n, for each n-simplex 
(vo, ... ,vn), a chain c(vo ..... v.) in Cn(UvoU ... U Uv), such that 

n 

a(c(vo .. . .. v) = 2: (-l)ic(vo .. . .. Vi •. . .• v.)· 
;=0 

The existence of c(vo .. . .. v.) follows from the fact that the right side is an 
(n - I)-cycle on Uvo U ... U Uv., and Hn-l(Uvo U ... U UvJ = 0 by Ex-
ercise 23.1S(b). This gives a map C*(N(au»~ C~. To see that the resulting 
map on homology is an isomorphism, induct on the number of open sets; 
take any V and construct subcomplexes LI and L2 as in the proof of Prop­
osition 24.33, and compare the corresponding Mayer-Vietoris sequence for 
LI and L2 with that of the covering of X by Uvand Uv'>'v Uv'. 

A.6. If not, each point has a neighborhood meeting only finitely many, and 
K would be contained in a finite union of such neighborhoods. 

A.8. Without loss of generality, one may assume K contains a neighbor­
hood of the origin. Map aK to sn-I by mapping P to P Illpll. This is contin­
uous and bijective, so a homeomorphism. Let f: Sn-I ~ aK be the inverse 
map. Define F: D n ~ K by F(O) = 0, and F(P) = IIPII· j{P fllPll) for P "# O. Then 
F is continuous and bijective, so a homeomorphism. 

A.16. A connected and locally path-connected space is path-connected, as 
seen by showing that the set of points that can be connected to a given point 
by a path is open and closed. 

B.12. Find a countable covering of U and so that each open set in the cov­
ering is contained in some U a' and so that any point has a neighborhood 
that only meets finitely many of the open sets. 

B.14. With g as in Step (2), let hex) = f~g(t) dtl f6g(t) dt, and set 
$(x, y) = her - rl)/r2 - rl), where r = II(x, y)ll. 

C. 7. If {ea} is a basis for F, and \p( ea ) = ea , these ea generate a free abelian 
subgroup F of A, and A is the direct sum of Ker(\p) and F by Exercise C.S. 

C.IS. Let (l be the map from A to B, 13 the map from B to C, and let C' 
be the image of 13, 13': B ~ C' the induced surjection . Iff in Hom(B, IR) maps 
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to 0 in Hom(A, IR), f vanishes on the image of a. Since B /Image(a) = C' , 
there is a homomorphism g' from C' to IR such that g' 0 W = f By the lemma, 
there is a homomorphism g from C to IR that restricts to g' on C'. Then 
go f3 = f, which means that g in Hom( C, IR) maps to f. 
C.16. Let B =A2/Al' and show that there are exact sequences 

O-AI-A2-B-O and O-B-A3- ... -An-O. 
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Index of Symbols 

For some general notation, see page 
365. 

CQ,OO, smooth, 3 
I-form, differential, 4 
J~w, integral of I-form along smooth 

path, 5 
along segmented path, 8 
along a continuous path or I-chain, 

127, 132 
d, df, differential of function, form, 

6,247,318,326,329,391 
w{}, I-form for angle, 6 
aR, boundary of rectangle, 11, 80 
",p,p path around circle, 15 
Wp,{}, I-form for angle around P, 16, 

22 
{}(t), angle function along path, 18 
W(""O), winding number around 0, 

19 
:y, lifting of path, 21, 156 
W("" P), winding number of", around 

P, 23, 36, 84 
",-t, inverse of path, 23, 165 
grad (f), gradient, 28 
Supp(",), support of path or chain, 

42 
W(F,P), winding number, 44, 328 
deg(F), degree of mapping of cir­

cles,45 

degp(F), local degree, 46 
D, disk, 50 
C = aD, boundary circle of disk, 50, 

80 
P*, antipode of P, 53 
HOU, Oth De Rham cohomology 

group, 63 
HI U, 1 st De Rham cohomology 

group, 63 
[w], cohomology class of form w, 64 
Wp = (]I27T)wp,{), 64 
0, coboundarymap, 65-67, 224, 326 
I-chain, 78-79 
O-chain, 80-81 
ZoU, group of O-chains on U, 81, 91 
BoU, group of O-boundaries on U, 81, 

91 
HoU = ZoU /BoU, Oth homology group 

on U, 81, 91 
C]U, group of I-chains on U, 82, 91 
ZIU, group of I-chains on U, 82, 91 
B 1 U, group of I-boundaries on U, 83, 

91 
H]U=ZIU/B1U, 1st homology group 

on U, 83, 91 
F *, map on chains or homology in­

duced by F, 89, 92 
IndexpV, index of vector field at 

point, 97, 104, 107 
vic, restriction of V to C, 97 

421 
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TpS, tangent space, 102 
g, genus of surface, 108, 112 
IRp2, projective plane, 115 
W('Y,A), winding number around set 

A, 123 
A"" infinite part of complement, 125 
(n + I)-connected plane domain, 125 
lJj(w) = lJ(w,A j), period, 130 
Resif), residue off at a, 133 
ordif), order off at a, 134 
a, boundary map, 137-140, 334 
S, subdivision operator, 139, 334-

335 
MV(i) to MV(vi), Mayer-Vietoris 

properties, 140-142, 148, 258 
+, -, maps on homology and co­
_ homology, 144, 148-149 

HoX, reduced homology group, 145 
flOx, reduced cohomology group, 

149 
n-sheeted covering, 155 
y * 'Y, endpoint of lift of 'Y starting at 

y, 156-157 
IRpn, real projective space, 159 
Aut(Y IX), group of deck transfor-

mations, 163 
0"' T, product of paths, 165 
En constant path at x, 165 
'!TI(X,X), fundamental group of X at 

x, 168 
['Y], class of loop 'Y in '!TI(X,X), 168 
e = [Ex], identity in '!TI(X, x), 168 
T#, map induced by path T, 169 
'!TI(X, X)abeh 173 
y * [0"], endpoint of lift of 0" starting 

at y, 180 
[0"] . z, left action of fundamental 

group on covering, 182-184 
PH: YH~X' covering from 

He '!TI(X, x), 189 
.Kabel, universal abelian covering, 192 
Pp: Yp ~ X, covering from 

p: '!TI(X,X)~G, 193-194 
(z x g), element of Yp from z E Y, 

gEG,194 

Index of Symbols 

HI(fJU;G), first Cech cohomology set, 
209 

E[(fJU,x;G), with base point, 210 
M~M, orientation covering, 219 
p",: X"'~X, covering from I-form, 

221 
HO(X;G), HI(X;G), cohomology, 

222-225 
YT~X, covering from G-set and G­

covering, 225 
Y(IjI)~X, covering from 1jI: G~G' 

and G-covering, 227 
aj and bj, basic loops on a surface, 

244 
(0", T), intersection number, 245-246, 

255-256, 357-358 
(J.j and I3j, basic I-forms on a surface, 

248-251 
ffxv, integral of 2-form on surface, 

251 
1'1, wedge of forms, 252, 325, 355, 

392 
(w,I1), intersection number for 1-

forms, 252, 289 
H 2X, second De Rham group, 257 
e(P) = e/P) , ramification index, 265 
ordp(f) , 267 
CIA, Riemann surface of genus 1, 

264, 275-276, 291-293 
gx, genus of Riemann surface X, 273 
Fw(Z, W), partial derivative, 277-278 
M = M(X) , field of meromorphic 

functions, 281 
C(z, w), field of rational functions in 

z and w, 282 
n = nl,o = nl,o(X), space of holo-

morphic I-forms, 284 
nO,1 = nO.I(X), antiholomorphic 1-

forms, 285 
ordp(w), order of meromorphic 1-

form, 287 
Resp( w), residue of meromorphic 1-

form, 288, 299 
WI, • • • , wg , basis of holomorphic 

I-forms, 289 
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Z = (Tj.k), period matrix, 290 
A, Abel-Jacobi mapping, 291 
Div(!), divisor off, 291, 295 
ordp(D), order of divisor at point, 295 
deg(D), degree of divisor, 295 
E 2: D, E - D is effective, 295 
Div(w), divisor of meromorphic 1-

fonn,295 
L(D), functions with poles allowed 

at D, 296 
a(D), meromorphic I-fonns with 

zeros at D, 296 
E, divisor of poles, 297 
f = (jp), adele, 299 
R, space of adeles, 299 
R(D), adeles with poles allowed at 

D,300 
SeD) = R/(R(D) + M), 300 
a'(D), dual space to SeD), 300 
ai, union of all a'(D), 302 
HkU, De Rham cohomology group, 

319,325 
'lTiX, x), higher homotopy group, 324 
H;X, De Rham cohomology with 

compact supports, 328 
af, boundary slices, 332 
CkX, k-chains on X, 332 
a, af, boundary of cube or chain, 333 
HkX = ZkX/BkX, homology group, 

333 
R, R(f), operator on chains, 333 

423 

A, A(r), operator on chains, 335 
Rp, operator on chains, 335 
Hk(X)CiJl, homology with small cubes, 

338 
a, boundary homomorphism, 348 
H;X, homology using <(;x cubes, 351 
qjJx, duality map, 356 
Hk(X; Z), Hk(X; G), cohomology 

groups, 358-359 
IKI, realization of simplicial com­

plex, 360 
C*K, chain complex of simplicial 

complex, 360, 363 
HnK, homology group of simplicial 

complex, 360 
fa, cubical chain of simplex, 361 
Int(A), interior of A, 369 
A, closure of A, 369 
Ker, kernel, 378, 380 
1m, image, 378, 381 
V /W, quotient space, 378 
VEBW, EBV", direct sum, 379, 381 
IIV", direct product, 379, 381 
v' w, dot product, 379 
Ilvll, length of v, 379 
GLnlR, invertible matrices, 379-380 
G /H, quotient group, 380 
Hom(G, G'), set of homomor­

phisms, 381 
F(X), free abelian group on X, 382 
H k (X), homology with Z/2Z coef­

ficients, 393 
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abelian covering, 192 
abelianized fundamental group, 173 
Abel-Jacobi mapping, 291-292 
Abel-Jacobi theorem, 291, 306-311 
Abel's theorem, 291, 306 
abstract simplicial complex, 359 
action of group on space, 158-159 
adele, 299 
adjacent faces, 233 
affinely independent vectors, 360 
Alexander's Lemma, 146 
analytic function, 132-133, 263, 264 
angle function, 6-7 

along path, 17-19,36-37 
antiholomorphic I-forms, 284 
antipode, antipodal map, 53-55, 172, 

340-341 
Antoine's necklace, 323 
approximation lemma, 87 
Argument Principle, 134-135 
atlas of charts, 389 
automorphism group of covering, 

163, 182-186, 189 

barycentric subdivision, 113, 273, 
363 

basis 
of free abelian group, 382 
of vector space, 378 

bilinear pairing, 253 
Borsuk-Ulam theorem, 54, 185,341, 

393-396 
boundary, 77, 368 

circle, 50, 80 
map, 137-140, 337-338 
I-chain, 82 

branched coverings, 268-272, 279, 
321 

branch locus, 321 
Brill-Noether reciprocity, 306 
Brouwer theorems, 50, 150, 340 

Cartesian product, 170, 368 
Cauchy integral theorem, formula, 

132-133 
Cauchy-Riemann equations, 131 
Cech 

with base point, 210 
coboundary, 212 
cocycle, 208 
cohomology class, group, 209, 

212, 228-229 
chain, 78-82, 332 
chain complex 

chain homotopy of maps of, 350 
exact sequence of, 347 
homology of, 347 
map of, 350 

425 
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chain rule, 373-374 
change in angle, 19, 36-37 
change of coordinates, 389 
chart, 389 
circulation of fluid, 29 
clamshell, 187, 192 
closed form, 12,247,319 
closed I-chain, 80 
closure, 369 
coboundmy map, 65-68, 223, 326 
coboundmy of cochain, 223 
cochain, 222 
cochain complex, 348 
code for triangulation of surface, 235-

236, 241-242 
cohomology, 222-225, 358-359; see 

also De Rham 
of cochain complex, 348 
with coefficients, 349 

coloring, 76, 115 
commutator subgroup, 173 
commute (diagram), 92 
compact, 367-368 
complex conjugation operator, 285 
complex integration, 131-136 
complex I-form, 131 
cone, 361 
conjugate homomorphisms, 196 
connected component, 369 
connected space, 369 
continuous map, 367 
contractible space, 93 
convex, 12, 368 
covering 

map, 153 
n-sheeted, 155 
from I-form, 220-222 
of space, 153 
transformation, 163 

critical point, nondegenerate, 101 
crosscap, 117, 203 
cube, k-cube, 332 

«600, 351 
curl, 29, 320 
curve 

Index 

complex affine plane, 277 
of a polynomial, 277 
Riemann surface of, 277-281 

cycle, 82 

deck transformation, 163 
deformation retract, 93 
degenerate cube, 332 
degree 

of divisor, 295 
homomorphism on O-cycles, 82 
of mapping of circles, 45, 53-55 
of mapping of oriented manifolds, 

342-343 
of mapping of spheres, 324, 339 

De Rham cohomology groups, 63-
65, 256-260, 325-328 

with compact supports, 328-331 
and homology, 213-216 

differentiable function on a surface, 
390 

differential form, 4, 247, 251, 317, 
391 

differential of function, form, 6, 247, 
318, 326, 329, 391 

differential topology, 113 
dimension of vector space, 378 
direct limit, 200-201, 358 
direct product, 379, 381 
direct sum, 379, 381 
discrete set, 100, 134, 203, 271 
discrete topology, 153,368 
discriminant, 278 
disjoint union, 368 
divergence, 29, 320 
divisor, 295 

of function, 291, 295 
of meromorphic I-form, 295 

Dog-on-a-Leash theorem, 41 
duality, 148, 213, 223, 350-359 

edge, 233 
effective divisor, 295 
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eigenvalues, 52 
elliptic curve, 291-293 
endpoint of path, 5 
engulfmg number, 31, 319, 328, 339 
equality of mixed partial derivatives, 

374 
Euler characteristic, xii, 113-119, 

146, 357, 363 
Euler's equation, theorem, 75, 113, 

244, 260, 363 
even action, 159, 161 
evenly covered, 153 
exact form, 12, 247, 319 
exactness of forms, 10-16 
exact sequence, 144, 348, 384-385 
exponential mapping, 154, 192,265 

face, 233, 359 
final point of path, 5 
Five-Lemma, 346-347 
fixed point, 49-53, 340 
fixed point property, 51 
fluid flow, 28-31, 305, 320 
flux of fluid, 29 
free abelian group, 382 

on a set, 382 
free group, 191,201-203 
free product, 200 
Fubini's theorem, 374 
functor, functorial, 92, 168, 326, 359 
fundamental group, 168-172 

and coverings, 179-182, 189-192 
and homology, 173-175 

fundamental theorem of algebra, 48-
49 

fundamental theorem of calculus, 373 

Galois theory, 190, 283 
Gauss's Lemma, 385 
G-covering, 158-164 

isomorphism of, 160 
trivial, 160 

generators of group, 380 

427 

genus, 244, 273, 281, 285-286 
geometry, locally Euclidean, 162-

163 
germ, 230-231, 283-284 
gradient, 28, 320 
graph (finite), xi, 75-76, 145,202 
Green's formulas, 30 
Green's theorem for a rectangle, 11, 

374 
grid, 85 
groups acting on spheres, 341 
G-sets, maps and isomorphisms of, 

225 

ham sandwich theorem, 57, 341 
harmonic function, 30-31, 305 
Hausdorff space, 367 
Hessian, 101, 286 
holes, 125 
holomorphic function, 264 
holomorphic I-form, 284-285, 294 
homeomorphism, 367 
homologous I-chains, 82, 88 
homology class, 84 
homology group, 81, 83, 332-334 

of chain complex, 347 
with coefficients, 393 

homomorphism from G-covering, 
194-195, 211 

homotopic 
maps, 92, 170, 324, 333 
paths, 39 

homotopy 
of closed paths, 27, 39, 165 
equivalence, 172, 202 
groups, 324-325 
of paths with fixed endpoints, 25, 

39 
type, 171-172 

Hopf mapping, 325 
Hurewicz theorem, 212 
hyperbolic plane, 245 
hyperelliptic curve, Riemann sur­

face, 293-294, 306 
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incompressible flow, 29 
independent of path, integral, 5, 8 
index of vector field at point, 97, 102, 

104, 107, 112,287,341,387, 
390 

initial point of path, 5 
integral 

of k-form over a k-cube, 351 
of I-form along a smooth path, 5, 

317 
along a continuous path or chain, 

127, 213, 247 
of 2-form, 251-252, 318 

integrating along a fiber, 330 
interior, 77, 369 
intersection pairing 

on manifold, 357-359 
on surface, 245-246, 252-256 

invariance of dimension, 55, 341, 344 
invariance of domain, 73, 344 
inverse limit, 358 
inverse of path, 23, 165 
irrotational flow, 29 
isomorphism of coverings, 153 

Jacobian matrix or determinant, 47, 
54,263,311,387 

Jacobian of Reimann surface, 291 
Jacobi Inversion Theorem, 291, 310 
Jordan curve theorem, 59-60, 68-77, 

146 
generalized, 343-345 

Klein bottle, 116, 161, 186,219,401 
knot, 320 

equivalence of, 320 
fundamental group of comple­

ment, 320-323 
similarity of, 320 
trivial, 321 

Konigsberg bridges, xi-xii 
Kuratowski theorem, 76 

lattice, 264, 290-291 
Lebesgue Lemma, 371-372 
left coset, 380 
Lens space, 162, 186 
lifting 

of homotopy, 157 
of mapping, 155, 180-181 
of path, 21, 156 

Index 

linearly independent, 382, 384 
link, linking number, 325, 342 
local degree, 46, 340 
locally connected space, 157-158, 

369 
locally constant, 3 
locally path-connected space, 180, 

370 
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